torch-pme
=========
.. image:: https://raw.githubusercontent.com/lab-cosmo/torch-pme/refs/heads/main/docs/src/logo/torch-pme.svg
:width: 200 px
:align: left
|tests| |codecov| |docs|
.. marker-introduction
``torch-pme`` enables efficient, auto-differentiable computation of long-range
interactions in PyTorch. Auto-differentiation is supported for particle *positions*,
*charges*, and *cell* parameters, allowing not only the automatic computation of forces
but also enabling general applications in machine learning tasks. The library offers
classes for Particle-Particle Particle-Mesh Ewald (P3M), Particle Mesh Ewald (``PME``),
standard ``Ewald``, and non-periodic methods, with the flexibility to calculate
potentials beyond :math:`1/r` electrostatics, including arbitrary order :math:`1/r^p`
potentials.
Optimized for both CPU and GPU devices, ``torch-pme`` is fully `TorchScriptable`_,
allowing it to be converted into a format that runs independently of Python, such as in
C++, making it ideal for high-performance production environments.
.. _`TorchScriptable`: https://pytorch.org/docs/stable/jit.html
.. marker-documentation
For details, tutorials, and examples, please have a look at our `documentation`_.
.. _`documentation`: https://lab-cosmo.github.io/torch-pme
.. marker-installation
Installation
------------
You can install *torch-pme* using pip with
.. code-block:: bash
pip install torch-pme
and ``import torchpme`` to use it in your projects!
We also provide bindings to `metatensor <https://docs.metatensor.org>`_ which
can optionally be installed together and used as ``torchpme.metatensor`` via
.. code-block:: bash
pip install torch-pme[metatensor]
.. marker-issues
Having problems or ideas?
-------------------------
Having a problem with torch-pme? Please let us know by `submitting an issue
<https://github.com/lab-cosmo/torch-pme/issues>`_.
Submit new features or bug fixes through a `pull request
<https://github.com/lab-cosmo/torch-pme/pulls>`_.
.. marker-cite
Reference
---------
If you use *torch-pme* for your work, please read and cite our preprint available on
`arXiv`_.
.. code-block::
@article{loche_fast_2024,
title = {Fast and Flexible Range-Separated Models for Atomistic Machine Learning},
author = {Loche, Philip and {Huguenin-Dumittan}, Kevin K. and Honarmand, Melika and Xu, Qianjun and Rumiantsev, Egor and How, Wei Bin and Langer, Marcel F. and Ceriotti, Michele},
year = {2024},
month = dec,
number = {arXiv:2412.03281},
eprint = {2412.03281},
primaryclass = {physics},
publisher = {arXiv},
doi = {10.48550/arXiv.2412.03281},
urldate = {2024-12-05},
archiveprefix = {arXiv}
}
.. _`arXiv`: http://arxiv.org/abs/2412.03281
.. marker-contributing
Contributors
------------
Thanks goes to all people that make torch-pme possible:
.. image:: https://contrib.rocks/image?repo=lab-cosmo/torch-pme
:target: https://github.com/lab-cosmo/torch-pme/graphs/contributors
.. |tests| image:: https://github.com/lab-cosmo/torch-pme/workflows/Tests/badge.svg
:alt: Github Actions Tests Job Status
:target: https://github.com/lab-cosmo/torch-pme/actions?query=workflow%3ATests
.. |codecov| image:: https://codecov.io/gh/lab-cosmo/torch-pme/graph/badge.svg?token=srVKRy7r6m
:alt: Code coverage
:target: https://codecov.io/gh/lab-cosmo/torch-pme
.. |docs| image:: https://img.shields.io/badge/documentation-latest-sucess
:alt: Documentation
:target: `documentation`_
Raw data
{
"_id": null,
"home_page": null,
"name": "torch-pme",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": "PyTorch, Auto-differentiation, Particle-Mesh Ewald, Electrostatics, Computational Materials Science, Machine Learning, Molecular Dynamics, GPU Acceleration, High-Performance Computing, Fourier Transform, TorchScript, Scientific Computing",
"author": "torch-pme developers",
"author_email": null,
"download_url": "https://files.pythonhosted.org/packages/96/50/590840e97b2f5ed7107bc2e57c931e44c52567e0e7f952385fb6056a8fc9/torch_pme-0.1.0.tar.gz",
"platform": null,
"description": "torch-pme\n=========\n\n.. image:: https://raw.githubusercontent.com/lab-cosmo/torch-pme/refs/heads/main/docs/src/logo/torch-pme.svg\n :width: 200 px\n :align: left\n\n|tests| |codecov| |docs|\n\n.. marker-introduction\n\n``torch-pme`` enables efficient, auto-differentiable computation of long-range\ninteractions in PyTorch. Auto-differentiation is supported for particle *positions*,\n*charges*, and *cell* parameters, allowing not only the automatic computation of forces\nbut also enabling general applications in machine learning tasks. The library offers\nclasses for Particle-Particle Particle-Mesh Ewald (P3M), Particle Mesh Ewald (``PME``),\nstandard ``Ewald``, and non-periodic methods, with the flexibility to calculate\npotentials beyond :math:`1/r` electrostatics, including arbitrary order :math:`1/r^p`\npotentials.\n\nOptimized for both CPU and GPU devices, ``torch-pme`` is fully `TorchScriptable`_,\nallowing it to be converted into a format that runs independently of Python, such as in\nC++, making it ideal for high-performance production environments.\n\n.. _`TorchScriptable`: https://pytorch.org/docs/stable/jit.html\n\n.. marker-documentation\n\nFor details, tutorials, and examples, please have a look at our `documentation`_.\n\n.. _`documentation`: https://lab-cosmo.github.io/torch-pme\n\n.. marker-installation\n\nInstallation\n------------\n\nYou can install *torch-pme* using pip with\n\n.. code-block:: bash\n\n pip install torch-pme\n\nand ``import torchpme`` to use it in your projects!\n\nWe also provide bindings to `metatensor <https://docs.metatensor.org>`_ which\ncan optionally be installed together and used as ``torchpme.metatensor`` via\n\n.. code-block:: bash\n\n pip install torch-pme[metatensor]\n\n.. marker-issues\n\nHaving problems or ideas?\n-------------------------\n\nHaving a problem with torch-pme? Please let us know by `submitting an issue\n<https://github.com/lab-cosmo/torch-pme/issues>`_.\n\nSubmit new features or bug fixes through a `pull request\n<https://github.com/lab-cosmo/torch-pme/pulls>`_.\n\n.. marker-cite\n\nReference\n---------\n\nIf you use *torch-pme* for your work, please read and cite our preprint available on\n`arXiv`_.\n\n.. code-block::\n\n @article{loche_fast_2024,\n title = {Fast and Flexible Range-Separated Models for Atomistic Machine Learning},\n author = {Loche, Philip and {Huguenin-Dumittan}, Kevin K. and Honarmand, Melika and Xu, Qianjun and Rumiantsev, Egor and How, Wei Bin and Langer, Marcel F. and Ceriotti, Michele},\n year = {2024},\n month = dec,\n number = {arXiv:2412.03281},\n eprint = {2412.03281},\n primaryclass = {physics},\n publisher = {arXiv},\n doi = {10.48550/arXiv.2412.03281},\n urldate = {2024-12-05},\n archiveprefix = {arXiv}\n }\n\n.. _`arXiv`: http://arxiv.org/abs/2412.03281\n\n.. marker-contributing\n\nContributors\n------------\n\nThanks goes to all people that make torch-pme possible:\n\n.. image:: https://contrib.rocks/image?repo=lab-cosmo/torch-pme\n :target: https://github.com/lab-cosmo/torch-pme/graphs/contributors\n\n.. |tests| image:: https://github.com/lab-cosmo/torch-pme/workflows/Tests/badge.svg\n :alt: Github Actions Tests Job Status\n :target: https://github.com/lab-cosmo/torch-pme/actions?query=workflow%3ATests\n\n.. |codecov| image:: https://codecov.io/gh/lab-cosmo/torch-pme/graph/badge.svg?token=srVKRy7r6m\n :alt: Code coverage\n :target: https://codecov.io/gh/lab-cosmo/torch-pme\n\n.. |docs| image:: https://img.shields.io/badge/documentation-latest-sucess\n :alt: Documentation\n :target: `documentation`_\n",
"bugtrack_url": null,
"license": "BSD-3-Clause",
"summary": "Particle-mesh based calculations of long-range interactions in PyTorch",
"version": "0.1.0",
"project_urls": {
"changelog": "https://lab-cosmo.github.io/torch-pme/latest/references/changelog.html",
"documentation": "https://lab-cosmo.github.io/torch-pme",
"homepage": "https://lab-cosmo.github.io/torch-pme",
"issues": "https://github.com/lab-cosmo/torch-pme/issues",
"repository": "https://github.com/lab-cosmo/torch-pme"
},
"split_keywords": [
"pytorch",
" auto-differentiation",
" particle-mesh ewald",
" electrostatics",
" computational materials science",
" machine learning",
" molecular dynamics",
" gpu acceleration",
" high-performance computing",
" fourier transform",
" torchscript",
" scientific computing"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "65dcd89121c11b285104269eae4f861851b5789ecd620b089bcc4567fb62d29e",
"md5": "fc6f35c9b6b5e263961430ec8a1b3892",
"sha256": "13f638355de046698ac8dbc984341f90582486ce13a09acc771c63f599dae8eb"
},
"downloads": -1,
"filename": "torch_pme-0.1.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "fc6f35c9b6b5e263961430ec8a1b3892",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9",
"size": 54518,
"upload_time": "2024-12-05T18:37:46",
"upload_time_iso_8601": "2024-12-05T18:37:46.649790Z",
"url": "https://files.pythonhosted.org/packages/65/dc/d89121c11b285104269eae4f861851b5789ecd620b089bcc4567fb62d29e/torch_pme-0.1.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "9650590840e97b2f5ed7107bc2e57c931e44c52567e0e7f952385fb6056a8fc9",
"md5": "99f6fc387e6355413715a31c7aa3d79a",
"sha256": "7d31801b44a19a1633ecc4f2c484811342940b074dcd01f30dd97ff5a4e69278"
},
"downloads": -1,
"filename": "torch_pme-0.1.0.tar.gz",
"has_sig": false,
"md5_digest": "99f6fc387e6355413715a31c7aa3d79a",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 39559,
"upload_time": "2024-12-05T18:37:47",
"upload_time_iso_8601": "2024-12-05T18:37:47.997074Z",
"url": "https://files.pythonhosted.org/packages/96/50/590840e97b2f5ed7107bc2e57c931e44c52567e0e7f952385fb6056a8fc9/torch_pme-0.1.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-12-05 18:37:47",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "lab-cosmo",
"github_project": "torch-pme",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"tox": true,
"lcname": "torch-pme"
}