# Installation
The basic installation of torchdriveenv uses an OpenCV renderer, which is slower but easy to install. PyTorch3D renderer can be faster, but it requires specific versions of CUDA and PyTorch, so it is best installed in Docker.
## Opencv rendering
To install the “torchdriveenv” with opencv rendering:
```
pip install torchdriveenv
```
To run examples:
Set the `$IAI_API_KEY` and `$WANDB_API_KEY`
```
pip install torchdriveenv[baselines]
cd examples
python rl_training.py
```
## Pytorch3d rendering
To install the “torchdriveenv” with Pytorch3d rendering:
```
docker build --target torchdriveenv-first-release -t torchdriveenv-first-release:latest .
```
To run examples:
Set the `$IAI_API_KEY` and `$WANDB_API_KEY`
```
cd examples
docker compose up rl-training
```
Raw data
{
"_id": null,
"home_page": null,
"name": "torchdriveenv",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "reinforcement learning, drive, RL environment, torch-drive-env, torchdriveenv, invertedai, inverted ai",
"author": null,
"author_email": "\"Inverted AI Ltd.\" <info@inverted.ai>",
"download_url": "https://files.pythonhosted.org/packages/18/14/30a006da240b3d7c1df1f349de2665d1d0ae39534ada7979dcc4a9430911/torchdriveenv-0.1.1.tar.gz",
"platform": null,
"description": "# Installation\n\nThe basic installation of torchdriveenv uses an OpenCV renderer, which is slower but easy to install. PyTorch3D renderer can be faster, but it requires specific versions of CUDA and PyTorch, so it is best installed in Docker.\n\n## Opencv rendering\n\nTo install the \u201ctorchdriveenv\u201d with opencv rendering:\n```\npip install torchdriveenv\n```\n\nTo run examples:\nSet the `$IAI_API_KEY` and `$WANDB_API_KEY`\n```\npip install torchdriveenv[baselines]\ncd examples\npython rl_training.py\n```\n\n## Pytorch3d rendering\n\nTo install the \u201ctorchdriveenv\u201d with Pytorch3d rendering:\n```\ndocker build --target torchdriveenv-first-release -t torchdriveenv-first-release:latest .\n```\n\nTo run examples:\nSet the `$IAI_API_KEY` and `$WANDB_API_KEY`\n```\ncd examples\ndocker compose up rl-training\n```\n",
"bugtrack_url": null,
"license": null,
"summary": "TorchDriveEnv is a lightweight 2D driving reinforcement learning environment, supported by a solid simulator and smart non-playable characters",
"version": "0.1.1",
"project_urls": null,
"split_keywords": [
"reinforcement learning",
" drive",
" rl environment",
" torch-drive-env",
" torchdriveenv",
" invertedai",
" inverted ai"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "118c1c00f43c2e689704a85b1099859ef7b46c27c4b5a1a5d631f2c3c9992215",
"md5": "9d66301f77f2ded27410f48968135587",
"sha256": "19219d8ee5db11fa2a72630c0cf1ba439da4d14e76f0e6308566126846e21d8f"
},
"downloads": -1,
"filename": "torchdriveenv-0.1.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "9d66301f77f2ded27410f48968135587",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 5805914,
"upload_time": "2024-05-07T00:56:25",
"upload_time_iso_8601": "2024-05-07T00:56:25.469505Z",
"url": "https://files.pythonhosted.org/packages/11/8c/1c00f43c2e689704a85b1099859ef7b46c27c4b5a1a5d631f2c3c9992215/torchdriveenv-0.1.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "181430a006da240b3d7c1df1f349de2665d1d0ae39534ada7979dcc4a9430911",
"md5": "86831c53c458f9c3cb47fd66e602efc3",
"sha256": "ea00be0e073e479320a5ecaea4908851ab1686942c7d7a04ff0c6c00b5c19058"
},
"downloads": -1,
"filename": "torchdriveenv-0.1.1.tar.gz",
"has_sig": false,
"md5_digest": "86831c53c458f9c3cb47fd66e602efc3",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 5725259,
"upload_time": "2024-05-07T00:56:27",
"upload_time_iso_8601": "2024-05-07T00:56:27.799143Z",
"url": "https://files.pythonhosted.org/packages/18/14/30a006da240b3d7c1df1f349de2665d1d0ae39534ada7979dcc4a9430911/torchdriveenv-0.1.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-05-07 00:56:27",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "torchdriveenv"
}