torchfa


Nametorchfa JSON
Version 0.0.5 PyPI version JSON
download
home_pagehttps://github.com/pengzhendong/Torchaudio-Forced-Aligner
SummaryTorchaudio Forced Aligner
upload_time2024-12-25 10:56:22
maintainerNone
docs_urlNone
authorZhendong Peng
requires_pythonNone
licenseNone
keywords
VCS
bugtrack_url
requirements g2p-mix lhotse torch torchaudio
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Torchaudio-Forced-Aligner

## Install

``` bash
$ pip install torchfa
```

## Usage

``` python
from torchfa import TorchaudioForcedAligner

aligner = TorchaudioForcedAligner()

audio = "assets/clean_speech.wav"
transcript = "关服务高端产品仍处于供不应求的局面"
cut = aligner.align_audios(audio, transcript)

cut.trim_to_alignments("word").save_audios("./")
for alignment in cut.supervisions[0].alignment["word"]:
    print(alignment)
```

```
AlignmentItem(symbol='关', start=0.02, duration=0.121, score=0.21)
AlignmentItem(symbol='服', start=0.241, duration=0.141, score=0.07)
AlignmentItem(symbol='务', start=0.502, duration=0.101, score=0.49)
AlignmentItem(symbol='高', start=0.724, duration=0.181, score=0.97)
AlignmentItem(symbol='端', start=0.945, duration=0.141, score=0.52)
AlignmentItem(symbol='产', start=1.126, duration=0.201, score=0.81)
AlignmentItem(symbol='品', start=1.367, duration=0.141, score=0.35)
AlignmentItem(symbol='仍', start=1.608, duration=0.201, score=0.89)
AlignmentItem(symbol='处', start=1.869, duration=0.121, score=0.72)
AlignmentItem(symbol='于', start=2.09, duration=0.06, score=0.96)
AlignmentItem(symbol='供', start=2.251, duration=0.161, score=0.95)
AlignmentItem(symbol='不', start=2.452, duration=0.06, score=0.69)
AlignmentItem(symbol='应', start=2.573, duration=0.161, score=0.63)
AlignmentItem(symbol='求', start=2.754, duration=0.141, score=0.95)
AlignmentItem(symbol='的', start=2.935, duration=0.08, score=0.99)
AlignmentItem(symbol='局', start=3.075, duration=0.101, score=0.98)
AlignmentItem(symbol='面', start=3.256, duration=0.221, score=0.94)
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/pengzhendong/Torchaudio-Forced-Aligner",
    "name": "torchfa",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": null,
    "author": "Zhendong Peng",
    "author_email": "pzd17@tsinghua.org.cn",
    "download_url": null,
    "platform": null,
    "description": "# Torchaudio-Forced-Aligner\n\n## Install\n\n``` bash\n$ pip install torchfa\n```\n\n## Usage\n\n``` python\nfrom torchfa import TorchaudioForcedAligner\n\naligner = TorchaudioForcedAligner()\n\naudio = \"assets/clean_speech.wav\"\ntranscript = \"\u5173\u670d\u52a1\u9ad8\u7aef\u4ea7\u54c1\u4ecd\u5904\u4e8e\u4f9b\u4e0d\u5e94\u6c42\u7684\u5c40\u9762\"\ncut = aligner.align_audios(audio, transcript)\n\ncut.trim_to_alignments(\"word\").save_audios(\"./\")\nfor alignment in cut.supervisions[0].alignment[\"word\"]:\n    print(alignment)\n```\n\n```\nAlignmentItem(symbol='\u5173', start=0.02, duration=0.121, score=0.21)\nAlignmentItem(symbol='\u670d', start=0.241, duration=0.141, score=0.07)\nAlignmentItem(symbol='\u52a1', start=0.502, duration=0.101, score=0.49)\nAlignmentItem(symbol='\u9ad8', start=0.724, duration=0.181, score=0.97)\nAlignmentItem(symbol='\u7aef', start=0.945, duration=0.141, score=0.52)\nAlignmentItem(symbol='\u4ea7', start=1.126, duration=0.201, score=0.81)\nAlignmentItem(symbol='\u54c1', start=1.367, duration=0.141, score=0.35)\nAlignmentItem(symbol='\u4ecd', start=1.608, duration=0.201, score=0.89)\nAlignmentItem(symbol='\u5904', start=1.869, duration=0.121, score=0.72)\nAlignmentItem(symbol='\u4e8e', start=2.09, duration=0.06, score=0.96)\nAlignmentItem(symbol='\u4f9b', start=2.251, duration=0.161, score=0.95)\nAlignmentItem(symbol='\u4e0d', start=2.452, duration=0.06, score=0.69)\nAlignmentItem(symbol='\u5e94', start=2.573, duration=0.161, score=0.63)\nAlignmentItem(symbol='\u6c42', start=2.754, duration=0.141, score=0.95)\nAlignmentItem(symbol='\u7684', start=2.935, duration=0.08, score=0.99)\nAlignmentItem(symbol='\u5c40', start=3.075, duration=0.101, score=0.98)\nAlignmentItem(symbol='\u9762', start=3.256, duration=0.221, score=0.94)\n```\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Torchaudio Forced Aligner",
    "version": "0.0.5",
    "project_urls": {
        "Homepage": "https://github.com/pengzhendong/Torchaudio-Forced-Aligner"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "5ae1bff9224b109074a4f63262caf620f208a358a26365fa816e8e52e481a7d6",
                "md5": "59016c31a530231e6d732e7e5edce88d",
                "sha256": "8cdaf1e19ea8cb5e7ae5818e636f06ba18a7e53b065f5f20accaa4c9d8138e62"
            },
            "downloads": -1,
            "filename": "torchfa-0.0.5-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "59016c31a530231e6d732e7e5edce88d",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 6570,
            "upload_time": "2024-12-25T10:56:22",
            "upload_time_iso_8601": "2024-12-25T10:56:22.810516Z",
            "url": "https://files.pythonhosted.org/packages/5a/e1/bff9224b109074a4f63262caf620f208a358a26365fa816e8e52e481a7d6/torchfa-0.0.5-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-25 10:56:22",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "pengzhendong",
    "github_project": "Torchaudio-Forced-Aligner",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "g2p-mix",
            "specs": []
        },
        {
            "name": "lhotse",
            "specs": []
        },
        {
            "name": "torch",
            "specs": []
        },
        {
            "name": "torchaudio",
            "specs": []
        }
    ],
    "lcname": "torchfa"
}
        
Elapsed time: 0.45484s