Name | torchft JSON |
Version |
0.1.0
JSON |
| download |
home_page | None |
Summary | None |
upload_time | 2024-10-13 04:19:09 |
maintainer | None |
docs_url | None |
author | None |
requires_python | >=3.8 |
license | None |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# torch-ft
Prototype repo for PyTorch fault tolerance
This implements a lighthouse server that coordinates across the different
replica groups and then a per replica group manager and fault tolerance library
that can be used in a standard PyTorch training loop.
This allows for membership changes at the training step granularity which can
greatly improve efficiency by avoiding stop the world training on errors.
## Installation
```sh
$ pip install .
```
This uses pyo3+maturin to build the package, you'll need maturin installed.
To install in editable mode w/ the Rust extensions you can use the normal pip install command:
```sh
$ pip install -e .
```
## Lighthouse
You can start a lighthouse server by running:
```sh
$ RUST_BACKTRACE=1 torchft_lighthouse --min_replicas 1 --quorum_tick_ms 100 --join_timeout_ms 1000
```
## Example Training Loop
See [train.py](./train.py) for the full example.
Invoke with:
```sh
$ TORCHFT_MANAGER_PORT=29512 TORCHFT_LIGHTHOUSE=http://localhost:29510 torchrun --master_port 29501 --nnodes 1 --nproc_per_node 1 train.py
```
train.py:
```py
from torchft import Manager, DistributedDataParallel, Optimizer, ProcessGroupGloo
manager = Manager(
pg=ProcessGroupGloo(),
load_state_dict=...,
state_dict=...,
)
m = nn.Linear(2, 3)
m = DistributedDataParallel(manager, m)
optimizer = Optimizer(manager, optim.AdamW(m.parameters()))
for i in range(1000):
batch = torch.rand(2, 2, device=device)
optimizer.zero_grad()
out = m(batch)
loss = out.sum()
loss.backward()
optimizer.step()
```
## Running Tests / Lint
```sh
$ cargo fmt
% cargo test
```
## License
Apache 2.0 -- see [LICENSE](./LICENSE) for more details.
Copyright (c) Tristan Rice 2024
Raw data
{
"_id": null,
"home_page": null,
"name": "torchft",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": null,
"author": null,
"author_email": null,
"download_url": null,
"platform": null,
"description": "# torch-ft\nPrototype repo for PyTorch fault tolerance\n\nThis implements a lighthouse server that coordinates across the different\nreplica groups and then a per replica group manager and fault tolerance library\nthat can be used in a standard PyTorch training loop.\n\nThis allows for membership changes at the training step granularity which can\ngreatly improve efficiency by avoiding stop the world training on errors.\n\n## Installation\n\n```sh\n$ pip install .\n```\n\nThis uses pyo3+maturin to build the package, you'll need maturin installed.\n\nTo install in editable mode w/ the Rust extensions you can use the normal pip install command:\n\n```sh\n$ pip install -e .\n```\n\n## Lighthouse\n\nYou can start a lighthouse server by running:\n\n```sh\n$ RUST_BACKTRACE=1 torchft_lighthouse --min_replicas 1 --quorum_tick_ms 100 --join_timeout_ms 1000\n```\n\n## Example Training Loop\n\nSee [train.py](./train.py) for the full example.\n\nInvoke with:\n\n```sh\n$ TORCHFT_MANAGER_PORT=29512 TORCHFT_LIGHTHOUSE=http://localhost:29510 torchrun --master_port 29501 --nnodes 1 --nproc_per_node 1 train.py\n```\n\ntrain.py:\n\n```py\nfrom torchft import Manager, DistributedDataParallel, Optimizer, ProcessGroupGloo\n\nmanager = Manager(\n pg=ProcessGroupGloo(), \n load_state_dict=...,\n state_dict=...,\n)\n\nm = nn.Linear(2, 3)\nm = DistributedDataParallel(manager, m)\noptimizer = Optimizer(manager, optim.AdamW(m.parameters()))\n\nfor i in range(1000):\n batch = torch.rand(2, 2, device=device)\n\n optimizer.zero_grad()\n\n out = m(batch)\n loss = out.sum()\n\n loss.backward()\n\n optimizer.step()\n```\n\n## Running Tests / Lint\n\n```sh\n$ cargo fmt\n% cargo test\n```\n\n## License\n\nApache 2.0 -- see [LICENSE](./LICENSE) for more details.\n\nCopyright (c) Tristan Rice 2024\n\n",
"bugtrack_url": null,
"license": null,
"summary": null,
"version": "0.1.0",
"project_urls": null,
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "0c26d5ac7a3b2d4a720ed2585ab0eca477967ce282a448fe6cb38fc57857547e",
"md5": "462941e7b0d05cab9575462442c51052",
"sha256": "ad25b21d10c5206124cf5d44aee5b30f6b0585a2e27c0946502198a019f04920"
},
"downloads": -1,
"filename": "torchft-0.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "462941e7b0d05cab9575462442c51052",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.8",
"size": 1959434,
"upload_time": "2024-10-13T04:19:09",
"upload_time_iso_8601": "2024-10-13T04:19:09.959449Z",
"url": "https://files.pythonhosted.org/packages/0c/26/d5ac7a3b2d4a720ed2585ab0eca477967ce282a448fe6cb38fc57857547e/torchft-0.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "5f8f3a9d4219740d9b05a4669900856e8d3b0045ebc779531e90fb6e5c2d0302",
"md5": "a999964c2ae50a72adffd3732794af62",
"sha256": "ce57ed03819c48824f48892da6fede5f74b133dfd3cd8672f1aba4f5a1982b67"
},
"downloads": -1,
"filename": "torchft-0.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "a999964c2ae50a72adffd3732794af62",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.8",
"size": 1959184,
"upload_time": "2024-10-13T04:19:13",
"upload_time_iso_8601": "2024-10-13T04:19:13.057693Z",
"url": "https://files.pythonhosted.org/packages/5f/8f/3a9d4219740d9b05a4669900856e8d3b0045ebc779531e90fb6e5c2d0302/torchft-0.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "d935dadba40bc3d38cc24ed7ba8aaa8ada86ae17ce6237a6c949d591faa98297",
"md5": "d3d1042ffff688990fa51a2c0ccde466",
"sha256": "33a87022eb439002c72aae0f30343f1d6ba3d6746efe7e214c9da1ec84f6b545"
},
"downloads": -1,
"filename": "torchft-0.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "d3d1042ffff688990fa51a2c0ccde466",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.8",
"size": 1961226,
"upload_time": "2024-10-13T04:19:15",
"upload_time_iso_8601": "2024-10-13T04:19:15.540231Z",
"url": "https://files.pythonhosted.org/packages/d9/35/dadba40bc3d38cc24ed7ba8aaa8ada86ae17ce6237a6c949d591faa98297/torchft-0.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "31bfc8fd90952e761fb4492c12025311678230165ead1bf4ac86c16b479d3997",
"md5": "8e5df98f36ab211757cf9aa760f169a1",
"sha256": "4309cebe34fb5a3a0e9e9aca4fb0aff9136150c6428c6a846ea5f37a194dcff3"
},
"downloads": -1,
"filename": "torchft-0.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "8e5df98f36ab211757cf9aa760f169a1",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": ">=3.8",
"size": 1960300,
"upload_time": "2024-10-13T04:11:45",
"upload_time_iso_8601": "2024-10-13T04:11:45.986983Z",
"url": "https://files.pythonhosted.org/packages/31/bf/c8fd90952e761fb4492c12025311678230165ead1bf4ac86c16b479d3997/torchft-0.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "bcc310fcb7822b7080b74b85efcc041bf802ace7b12c5a368410d3c0bd143691",
"md5": "64a997925ed98d58bf49417dbe0b02a2",
"sha256": "243626e9c6919b81666accf9a5ef3dd6d3ec56768ec27fb4b4a941d785965933"
},
"downloads": -1,
"filename": "torchft-0.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "64a997925ed98d58bf49417dbe0b02a2",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.8",
"size": 1959949,
"upload_time": "2024-10-13T04:19:35",
"upload_time_iso_8601": "2024-10-13T04:19:35.929360Z",
"url": "https://files.pythonhosted.org/packages/bc/c3/10fcb7822b7080b74b85efcc041bf802ace7b12c5a368410d3c0bd143691/torchft-0.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-10-13 04:19:09",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "torchft"
}