torchist


Nametorchist JSON
Version 0.2.3 PyPI version JSON
download
home_pagehttps://github.com/francois-rozet/torchist
SummaryNumPy-style histograms in PyTorch
upload_time2024-04-03 14:47:53
maintainerNone
docs_urlNone
authorFrançois Rozet
requires_python>=3.6
licenseNone
keywords torch histogram
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # NumPy-style histograms in PyTorch

The `torchist` package implements NumPy's [`histogram`](https://numpy.org/doc/stable/reference/generated/numpy.histogram.html) and [`histogramdd`](https://numpy.org/doc/stable/reference/generated/numpy.histogramdd.html) functions in PyTorch with CUDA support. The package also features implementations of [`ravel_multi_index`](https://numpy.org/doc/stable/reference/generated/numpy.ravel_multi_index.html), [`unravel_index`](https://numpy.org/doc/stable/reference/generated/numpy.unravel_index.html) and some useful functionals like `entropy` or `kl_divergence`.

## Installation

The `torchist` package is available on [PyPI](https://pypi.org/project/torchist), which means it is installable with `pip`.

```
pip install torchist
```

Alternatively, if you need the latest features, you can install it from the repository.

```
pip install git+https://github.com/francois-rozet/torchist
```

## Getting Started

```python
import torch
import torchist

x = torch.rand(100, 3).cuda()

hist = torchist.histogramdd(x, bins=10, low=0.0, upp=1.0)

print(hist.shape)  # (10, 10, 10)
```

## Benchmark

The implementations of `torchist` are on par or faster than those of `numpy` on CPU and benefit greately from CUDA capabilities.

```console
$ python torchist/__init__.py
CPU
---
np.histogram : 1.2559 s
np.histogramdd : 20.7816 s
np.histogram (non-uniform) : 5.4878 s
np.histogramdd (non-uniform) : 17.3757 s
torchist.histogram : 1.3975 s
torchist.histogramdd : 9.6160 s
torchist.histogram (non-uniform) : 5.0883 s
torchist.histogramdd (non-uniform) : 17.2743 s

CUDA
----
torchist.histogram : 0.1363 s
torchist.histogramdd : 0.3754 s
torchist.histogram (non-uniform) : 0.1355 s
torchist.histogramdd (non-uniform) : 0.5137 s
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/francois-rozet/torchist",
    "name": "torchist",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": null,
    "keywords": "torch, histogram",
    "author": "Fran\u00e7ois Rozet",
    "author_email": "francois.rozet@outlook.com",
    "download_url": "https://files.pythonhosted.org/packages/82/a4/fd1a4af353ef5ba575456cfd16a91109481a102a233f3400dbe066a8e4a4/torchist-0.2.3.tar.gz",
    "platform": null,
    "description": "# NumPy-style histograms in PyTorch\n\nThe `torchist` package implements NumPy's [`histogram`](https://numpy.org/doc/stable/reference/generated/numpy.histogram.html) and [`histogramdd`](https://numpy.org/doc/stable/reference/generated/numpy.histogramdd.html) functions in PyTorch with CUDA support. The package also features implementations of [`ravel_multi_index`](https://numpy.org/doc/stable/reference/generated/numpy.ravel_multi_index.html), [`unravel_index`](https://numpy.org/doc/stable/reference/generated/numpy.unravel_index.html) and some useful functionals like `entropy` or `kl_divergence`.\n\n## Installation\n\nThe `torchist` package is available on [PyPI](https://pypi.org/project/torchist), which means it is installable with `pip`.\n\n```\npip install torchist\n```\n\nAlternatively, if you need the latest features, you can install it from the repository.\n\n```\npip install git+https://github.com/francois-rozet/torchist\n```\n\n## Getting Started\n\n```python\nimport torch\nimport torchist\n\nx = torch.rand(100, 3).cuda()\n\nhist = torchist.histogramdd(x, bins=10, low=0.0, upp=1.0)\n\nprint(hist.shape)  # (10, 10, 10)\n```\n\n## Benchmark\n\nThe implementations of `torchist` are on par or faster than those of `numpy` on CPU and benefit greately from CUDA capabilities.\n\n```console\n$ python torchist/__init__.py\nCPU\n---\nnp.histogram : 1.2559 s\nnp.histogramdd : 20.7816 s\nnp.histogram (non-uniform) : 5.4878 s\nnp.histogramdd (non-uniform) : 17.3757 s\ntorchist.histogram : 1.3975 s\ntorchist.histogramdd : 9.6160 s\ntorchist.histogram (non-uniform) : 5.0883 s\ntorchist.histogramdd (non-uniform) : 17.2743 s\n\nCUDA\n----\ntorchist.histogram : 0.1363 s\ntorchist.histogramdd : 0.3754 s\ntorchist.histogram (non-uniform) : 0.1355 s\ntorchist.histogramdd (non-uniform) : 0.5137 s\n```\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "NumPy-style histograms in PyTorch",
    "version": "0.2.3",
    "project_urls": {
        "Homepage": "https://github.com/francois-rozet/torchist"
    },
    "split_keywords": [
        "torch",
        " histogram"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3759f340823a5a07418e90d7861812014dc9b0df98c518aa33153ce0bd05ffe1",
                "md5": "84a8f1deee50777c43a8630946c0150a",
                "sha256": "887702fc55aa74bccebc00c7e9238407844a548443aecc773a5e3985496e103b"
            },
            "downloads": -1,
            "filename": "torchist-0.2.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "84a8f1deee50777c43a8630946c0150a",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 7900,
            "upload_time": "2024-04-03T14:47:51",
            "upload_time_iso_8601": "2024-04-03T14:47:51.351714Z",
            "url": "https://files.pythonhosted.org/packages/37/59/f340823a5a07418e90d7861812014dc9b0df98c518aa33153ce0bd05ffe1/torchist-0.2.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "82a4fd1a4af353ef5ba575456cfd16a91109481a102a233f3400dbe066a8e4a4",
                "md5": "e08bffcdca630efbcbee5d11c84c6303",
                "sha256": "56423cceb5deb843faaa8b4dbbefc4a6b5ea72a5d5f49b43dc26f32f616d182b"
            },
            "downloads": -1,
            "filename": "torchist-0.2.3.tar.gz",
            "has_sig": false,
            "md5_digest": "e08bffcdca630efbcbee5d11c84c6303",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 8139,
            "upload_time": "2024-04-03T14:47:53",
            "upload_time_iso_8601": "2024-04-03T14:47:53.080923Z",
            "url": "https://files.pythonhosted.org/packages/82/a4/fd1a4af353ef5ba575456cfd16a91109481a102a233f3400dbe066a8e4a4/torchist-0.2.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-04-03 14:47:53",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "francois-rozet",
    "github_project": "torchist",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [],
    "lcname": "torchist"
}
        
Elapsed time: 0.62625s