torchsparsegradutils


Nametorchsparsegradutils JSON
Version 0.1.2 PyPI version JSON
download
home_pagehttps://github.com/cai4cai/torchsparsegradutils
SummaryA collection of utility functions to work with PyTorch sparse tensors
upload_time2023-08-15 15:09:13
maintainer
docs_urlNone
authorCAI4CAI research group
requires_python>=3.8, <3.11
licenseApache-2.0
keywords sparse torch utility
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Sparsity-preserving gradient utility tools for PyTorch
A collection of utility functions to work with PyTorch sparse tensors. This is work-in-progress, here be dragons.

Currenly available features with backprop include:
- Memory efficient sparse mm with batch support (workaround for https://github.com/pytorch/pytorch/issues/41128)
- Sparse triangular solver with batch support (see discussion in https://github.com/pytorch/pytorch/issues/87358)
- Generic sparse linear solver (requires a non-differentiable backbone sparse solver)
- Generic sparse linear least-squares solver (requires a non-differentiable backbone sparse linear least-squares solver)
- Wrappers around [cupy sparse solvers](https://docs.cupy.dev/en/stable/reference/scipy_sparse_linalg.html#solving-linear-problems) (see discussion in https://github.com/pytorch/pytorch/issues/69538)
- Wrappers around [jax sparse solvers](https://jax.readthedocs.io/en/latest/jax.scipy.html#module-jax.scipy.sparse.linalg)
- Sparse multivariate normal distribution with sparse covariance and precision parameterisation, with reparameterised sampling (rsample)

Additional backbone solvers implemented in pytorch with no additional dependencies include:
- BICGSTAB (ported from [pykrylov](https://github.com/PythonOptimizers/pykrylov))
- CG (ported from [cornellius-gp/linear_operator](https://github.com/cornellius-gp/linear_operator))
- LSMR (ported from [pytorch-minimize](https://github.com/rfeinman/pytorch-minimize))
- MINRES (ported from [cornellius-gp/linear_operator](https://github.com/cornellius-gp/linear_operator))

Additional features:
- Pairwise voxel encoder for encoding local neighbourhood relationships in a 3D spatial volume with multiple channels, into a sparse COO or CSR matrix.

Things that are missing may be listed as [issues](https://github.com/cai4cai/torchsparsegradutils/issues).

## Installation
The provided package can be installed using:

`pip install torchsparsegradutils`

or

`pip install git+https://github.com/cai4cai/torchsparsegradutils`

## Unit Tests
A number of unittests are provided, which can be run as:

```
python -m pytest
```
 (Note that this also runs the tests from `unittest`)

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/cai4cai/torchsparsegradutils",
    "name": "torchsparsegradutils",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.8, <3.11",
    "maintainer_email": "",
    "keywords": "sparse torch utility",
    "author": "CAI4CAI research group",
    "author_email": "contact@cai4cai.uk",
    "download_url": "https://files.pythonhosted.org/packages/c6/9c/cc1719a1ac675c59ca08a3361b86585f517a8d9a344ffc3eaaa829210bd5/torchsparsegradutils-0.1.2.tar.gz",
    "platform": null,
    "description": "# Sparsity-preserving gradient utility tools for PyTorch\nA collection of utility functions to work with PyTorch sparse tensors. This is work-in-progress, here be dragons.\n\nCurrenly available features with backprop include:\n- Memory efficient sparse mm with batch support (workaround for https://github.com/pytorch/pytorch/issues/41128)\n- Sparse triangular solver with batch support (see discussion in https://github.com/pytorch/pytorch/issues/87358)\n- Generic sparse linear solver (requires a non-differentiable backbone sparse solver)\n- Generic sparse linear least-squares solver (requires a non-differentiable backbone sparse linear least-squares solver)\n- Wrappers around [cupy sparse solvers](https://docs.cupy.dev/en/stable/reference/scipy_sparse_linalg.html#solving-linear-problems) (see discussion in https://github.com/pytorch/pytorch/issues/69538)\n- Wrappers around [jax sparse solvers](https://jax.readthedocs.io/en/latest/jax.scipy.html#module-jax.scipy.sparse.linalg)\n- Sparse multivariate normal distribution with sparse covariance and precision parameterisation, with reparameterised sampling (rsample)\n\nAdditional backbone solvers implemented in pytorch with no additional dependencies include:\n- BICGSTAB (ported from [pykrylov](https://github.com/PythonOptimizers/pykrylov))\n- CG (ported from [cornellius-gp/linear_operator](https://github.com/cornellius-gp/linear_operator))\n- LSMR (ported from [pytorch-minimize](https://github.com/rfeinman/pytorch-minimize))\n- MINRES (ported from [cornellius-gp/linear_operator](https://github.com/cornellius-gp/linear_operator))\n\nAdditional features:\n- Pairwise voxel encoder for encoding local neighbourhood relationships in a 3D spatial volume with multiple channels, into a sparse COO or CSR matrix.\n\nThings that are missing may be listed as [issues](https://github.com/cai4cai/torchsparsegradutils/issues).\n\n## Installation\nThe provided package can be installed using:\n\n`pip install torchsparsegradutils`\n\nor\n\n`pip install git+https://github.com/cai4cai/torchsparsegradutils`\n\n## Unit Tests\nA number of unittests are provided, which can be run as:\n\n```\npython -m pytest\n```\n (Note that this also runs the tests from `unittest`)\n",
    "bugtrack_url": null,
    "license": "Apache-2.0",
    "summary": "A collection of utility functions to work with PyTorch sparse tensors",
    "version": "0.1.2",
    "project_urls": {
        "Homepage": "https://github.com/cai4cai/torchsparsegradutils"
    },
    "split_keywords": [
        "sparse",
        "torch",
        "utility"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "87ee753527362adfef288b0ef2273f95ead81e6deb4f505d1c9dae0cddcf3318",
                "md5": "5d6b3cdbcc82c3048611685edd0868c3",
                "sha256": "3611408bf1f2ff13eceec01c68820d141dd3be42083f2bb84721cb5c771aba6a"
            },
            "downloads": -1,
            "filename": "torchsparsegradutils-0.1.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "5d6b3cdbcc82c3048611685edd0868c3",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8, <3.11",
            "size": 84479,
            "upload_time": "2023-08-15T15:09:11",
            "upload_time_iso_8601": "2023-08-15T15:09:11.356051Z",
            "url": "https://files.pythonhosted.org/packages/87/ee/753527362adfef288b0ef2273f95ead81e6deb4f505d1c9dae0cddcf3318/torchsparsegradutils-0.1.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c69ccc1719a1ac675c59ca08a3361b86585f517a8d9a344ffc3eaaa829210bd5",
                "md5": "0aa16c29c0cfd3a9d5441c87eac351b8",
                "sha256": "bcffddee7a2dd4db0552992b612618694f8d76a02dad2671db4cb0ccea7fbafd"
            },
            "downloads": -1,
            "filename": "torchsparsegradutils-0.1.2.tar.gz",
            "has_sig": false,
            "md5_digest": "0aa16c29c0cfd3a9d5441c87eac351b8",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8, <3.11",
            "size": 67366,
            "upload_time": "2023-08-15T15:09:13",
            "upload_time_iso_8601": "2023-08-15T15:09:13.898282Z",
            "url": "https://files.pythonhosted.org/packages/c6/9c/cc1719a1ac675c59ca08a3361b86585f517a8d9a344ffc3eaaa829210bd5/torchsparsegradutils-0.1.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-08-15 15:09:13",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "cai4cai",
    "github_project": "torchsparsegradutils",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "torchsparsegradutils"
}
        
Elapsed time: 0.15905s