torchviz


Nametorchviz JSON
Version 0.0.3 PyPI version JSON
download
home_pagehttps://github.com/pytorch/pytorchviz
SummaryA small package to create visualizations of PyTorch execution graphs
upload_time2024-12-02 02:46:54
maintainerNone
docs_urlNone
authorSergey Zagoruyko
requires_pythonNone
licenseBSD
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            PyTorchViz
==========

A small package to create visualizations of PyTorch execution graphs and traces.

[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/szagoruyko/pytorchviz/blob/master/examples.ipynb)

## Installation

Install graphviz, e.g.:

```
brew install graphviz
```

Install the package itself:

```
pip install torchviz
```


## Usage
Example usage of `make_dot`:
```
model = nn.Sequential()
model.add_module('W0', nn.Linear(8, 16))
model.add_module('tanh', nn.Tanh())
model.add_module('W1', nn.Linear(16, 1))

x = torch.randn(1, 8)
y = model(x)

make_dot(y.mean(), params=dict(model.named_parameters()))
```
![image](https://user-images.githubusercontent.com/13428986/110844921-ff3f7500-8277-11eb-912e-3ba03623fdf5.png)

Set `show_attrs=True` and `show_saved=True` to see what autograd saves for the backward pass. (Note that this is only available for pytorch >= 1.9.)
```
model = nn.Sequential()
model.add_module('W0', nn.Linear(8, 16))
model.add_module('tanh', nn.Tanh())
model.add_module('W1', nn.Linear(16, 1))

x = torch.randn(1, 8)
y = model(x)

make_dot(y.mean(), params=dict(model.named_parameters()), show_attrs=True, show_saved=True)
```
![image](https://user-images.githubusercontent.com/13428986/110845186-4ded0f00-8278-11eb-88d2-cc33413bb261.png)

## Acknowledgements

The script was moved from [functional-zoo](https://github.com/szagoruyko/functional-zoo) where it was created with the help of Adam Paszke, Soumith Chintala, Anton Osokin, and uses bits from [tensorboard-pytorch](https://github.com/lanpa/tensorboard-pytorch).
Other contributors are [@willprice](https://github.com/willprice), [@soulitzer](https://github.com/soulitzer), [@albanD](https://github.com/albanD).

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/pytorch/pytorchviz",
    "name": "torchviz",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": null,
    "author": "Sergey Zagoruyko",
    "author_email": "sergey.zagoruyko@enpc.fr",
    "download_url": "https://files.pythonhosted.org/packages/5c/80/a84e0e8877630262c3f4c8d2e7fd0647c6751afeca301cfc04a1b65ac820/torchviz-0.0.3.tar.gz",
    "platform": null,
    "description": "PyTorchViz\n==========\n\nA small package to create visualizations of PyTorch execution graphs and traces.\n\n[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/szagoruyko/pytorchviz/blob/master/examples.ipynb)\n\n## Installation\n\nInstall graphviz, e.g.:\n\n```\nbrew install graphviz\n```\n\nInstall the package itself:\n\n```\npip install torchviz\n```\n\n\n## Usage\nExample usage of `make_dot`:\n```\nmodel = nn.Sequential()\nmodel.add_module('W0', nn.Linear(8, 16))\nmodel.add_module('tanh', nn.Tanh())\nmodel.add_module('W1', nn.Linear(16, 1))\n\nx = torch.randn(1, 8)\ny = model(x)\n\nmake_dot(y.mean(), params=dict(model.named_parameters()))\n```\n![image](https://user-images.githubusercontent.com/13428986/110844921-ff3f7500-8277-11eb-912e-3ba03623fdf5.png)\n\nSet `show_attrs=True` and `show_saved=True` to see what autograd saves for the backward pass. (Note that this is only available for pytorch >= 1.9.)\n```\nmodel = nn.Sequential()\nmodel.add_module('W0', nn.Linear(8, 16))\nmodel.add_module('tanh', nn.Tanh())\nmodel.add_module('W1', nn.Linear(16, 1))\n\nx = torch.randn(1, 8)\ny = model(x)\n\nmake_dot(y.mean(), params=dict(model.named_parameters()), show_attrs=True, show_saved=True)\n```\n![image](https://user-images.githubusercontent.com/13428986/110845186-4ded0f00-8278-11eb-88d2-cc33413bb261.png)\n\n## Acknowledgements\n\nThe script was moved from [functional-zoo](https://github.com/szagoruyko/functional-zoo) where it was created with the help of Adam Paszke, Soumith Chintala, Anton Osokin, and uses bits from [tensorboard-pytorch](https://github.com/lanpa/tensorboard-pytorch).\nOther contributors are [@willprice](https://github.com/willprice), [@soulitzer](https://github.com/soulitzer), [@albanD](https://github.com/albanD).\n",
    "bugtrack_url": null,
    "license": "BSD",
    "summary": "A small package to create visualizations of PyTorch execution graphs",
    "version": "0.0.3",
    "project_urls": {
        "Homepage": "https://github.com/pytorch/pytorchviz"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "5e06bea648249802b65282414caf5e7bc94fcb6e5a3e311b537845417d19edb9",
                "md5": "6e6c4d2f92d0a4c0a2264b8f2ee0f9e9",
                "sha256": "5eab98d17cbe8a54727cfa6a527681cff613430fff8fc68f52302ca5fa26cdf1"
            },
            "downloads": -1,
            "filename": "torchviz-0.0.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "6e6c4d2f92d0a4c0a2264b8f2ee0f9e9",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 5708,
            "upload_time": "2024-12-02T02:46:52",
            "upload_time_iso_8601": "2024-12-02T02:46:52.838950Z",
            "url": "https://files.pythonhosted.org/packages/5e/06/bea648249802b65282414caf5e7bc94fcb6e5a3e311b537845417d19edb9/torchviz-0.0.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "5c80a84e0e8877630262c3f4c8d2e7fd0647c6751afeca301cfc04a1b65ac820",
                "md5": "b4597c4122d9b515036273bf40f6c673",
                "sha256": "2e95f2fea7a31ec9549f2d6bbf446d75aeb6a9880fcf13e7dd843fdcdb4a3725"
            },
            "downloads": -1,
            "filename": "torchviz-0.0.3.tar.gz",
            "has_sig": false,
            "md5_digest": "b4597c4122d9b515036273bf40f6c673",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 5705,
            "upload_time": "2024-12-02T02:46:54",
            "upload_time_iso_8601": "2024-12-02T02:46:54.671106Z",
            "url": "https://files.pythonhosted.org/packages/5c/80/a84e0e8877630262c3f4c8d2e7fd0647c6751afeca301cfc04a1b65ac820/torchviz-0.0.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-02 02:46:54",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "pytorch",
    "github_project": "pytorchviz",
    "github_not_found": true,
    "lcname": "torchviz"
}
        
Elapsed time: 0.36954s