Name | torchviz2 JSON |
Version |
0.0.2
JSON |
| download |
home_page | None |
Summary | A small package to create visualizations of PyTorch execution graphs |
upload_time | 2024-09-28 15:22:49 |
maintainer | None |
docs_url | None |
author | Leo Ware |
requires_python | None |
license | MIT |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
PyTorchViz
==========
**This is a fork of the original package `torchviz`, which is no longer maintained.**
A small package to create visualizations of PyTorch execution graphs and traces.
## Installation
Install graphviz, e.g.:
```
brew install graphviz
```
Install the package itself:
```
pip install torchviz2
```
## Usage
Example usage of `make_dot`:
```
import torch
from torch import nn
from torchviz import make_dot
model = nn.Sequential()
model.add_module('W0', nn.Linear(8, 16))
model.add_module('tanh', nn.Tanh())
model.add_module('W1', nn.Linear(16, 1))
x = torch.randn(1, 8)
y = model(x)
make_dot(y.mean(), params=dict(model.named_parameters()))
```
![image](https://user-images.githubusercontent.com/13428986/110844921-ff3f7500-8277-11eb-912e-3ba03623fdf5.png)
Set `show_attrs=True` and `show_saved=True` to see what autograd saves for the backward pass. (Note that this is only available for pytorch >= 1.9.)
```
model = nn.Sequential()
model.add_module('W0', nn.Linear(8, 16))
model.add_module('tanh', nn.Tanh())
model.add_module('W1', nn.Linear(16, 1))
x = torch.randn(1, 8)
y = model(x)
make_dot(y.mean(), params=dict(model.named_parameters()), show_attrs=True, show_saved=True)
```
![image](https://user-images.githubusercontent.com/13428986/110845186-4ded0f00-8278-11eb-88d2-cc33413bb261.png)
Raw data
{
"_id": null,
"home_page": null,
"name": "torchviz2",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": null,
"author": "Leo Ware",
"author_email": "leoware@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/5b/9f/c0e0d7e790003c8bc7c7db5ccaf49710a1ccc46de066bbb6b630ef5b55c8/torchviz2-0.0.2.tar.gz",
"platform": null,
"description": "PyTorchViz\n==========\n\n**This is a fork of the original package `torchviz`, which is no longer maintained.**\n\nA small package to create visualizations of PyTorch execution graphs and traces.\n\n## Installation\n\nInstall graphviz, e.g.:\n\n```\nbrew install graphviz\n```\n\nInstall the package itself:\n\n```\npip install torchviz2\n```\n\n\n## Usage\nExample usage of `make_dot`:\n```\nimport torch\nfrom torch import nn\nfrom torchviz import make_dot\n\nmodel = nn.Sequential()\nmodel.add_module('W0', nn.Linear(8, 16))\nmodel.add_module('tanh', nn.Tanh())\nmodel.add_module('W1', nn.Linear(16, 1))\n\nx = torch.randn(1, 8)\ny = model(x)\n\nmake_dot(y.mean(), params=dict(model.named_parameters()))\n```\n![image](https://user-images.githubusercontent.com/13428986/110844921-ff3f7500-8277-11eb-912e-3ba03623fdf5.png)\n\nSet `show_attrs=True` and `show_saved=True` to see what autograd saves for the backward pass. (Note that this is only available for pytorch >= 1.9.)\n```\nmodel = nn.Sequential()\nmodel.add_module('W0', nn.Linear(8, 16))\nmodel.add_module('tanh', nn.Tanh())\nmodel.add_module('W1', nn.Linear(16, 1))\n\nx = torch.randn(1, 8)\ny = model(x)\n\nmake_dot(y.mean(), params=dict(model.named_parameters()), show_attrs=True, show_saved=True)\n```\n![image](https://user-images.githubusercontent.com/13428986/110845186-4ded0f00-8278-11eb-88d2-cc33413bb261.png)\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "A small package to create visualizations of PyTorch execution graphs",
"version": "0.0.2",
"project_urls": null,
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "62897aa6ad8acb05a26b83ebfc510fb61eaeb1ca74480ea390d8cd26adba2a5f",
"md5": "eb97770daac503445ab5c275f27816eb",
"sha256": "b81fc6e925136cb97c21893355941c39aa6ce9f0d45e3aef8d54d0ac0eacaa47"
},
"downloads": -1,
"filename": "torchviz2-0.0.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "eb97770daac503445ab5c275f27816eb",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 5515,
"upload_time": "2024-09-28T15:22:47",
"upload_time_iso_8601": "2024-09-28T15:22:47.981510Z",
"url": "https://files.pythonhosted.org/packages/62/89/7aa6ad8acb05a26b83ebfc510fb61eaeb1ca74480ea390d8cd26adba2a5f/torchviz2-0.0.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "5b9fc0e0d7e790003c8bc7c7db5ccaf49710a1ccc46de066bbb6b630ef5b55c8",
"md5": "b5ce97f04ca4bc758c3b2421343fa768",
"sha256": "7db33c6701354dc48944d51fd267fc72df9b141007bfcd7ca7963198ebc26fe5"
},
"downloads": -1,
"filename": "torchviz2-0.0.2.tar.gz",
"has_sig": false,
"md5_digest": "b5ce97f04ca4bc758c3b2421343fa768",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 5680,
"upload_time": "2024-09-28T15:22:49",
"upload_time_iso_8601": "2024-09-28T15:22:49.427197Z",
"url": "https://files.pythonhosted.org/packages/5b/9f/c0e0d7e790003c8bc7c7db5ccaf49710a1ccc46de066bbb6b630ef5b55c8/torchviz2-0.0.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-09-28 15:22:49",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "torchviz2"
}