tortoise-vector


Nametortoise-vector JSON
Version 0.2.0 PyPI version JSON
download
home_pagehttps://github.com/Chr0nos/tortoise_vector
Summarypgvector implementation for Tortoise-ORM
upload_time2025-10-10 14:21:05
maintainerNone
docs_urlNone
authorSebastien Nicolet
requires_python>=3.10
licenseMIT
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Implementation of vector for Tortoise-ORM
This package adds the support of `pgvector` vectors to Tortoise-ORM as a new type of fields.
That way you can filter/order by cosine similarity distances for scementic search using embeddings.
Here's an example for openai's embeddings but this will work with any kind of embeddings.
Usage:

```python
from tortoise.models import Model, QuerySet
from tortoise_vector.field import VectorField
from tortoise_vector.expression import CosineSimilarity


OPENAI_VECTOR_SIZE = 1536


class MyModel(Model):
    # vectors have a fixed size, openai uses 1536 dimensions
    embedding = VectorField(vector_size=OPENAI_VECTOR_SIZE)



async def get_embedding_from_text(string: str) -> list[float]:
    ...


async def get_nearst_models(text: str) -> QuerySet[MyModel]:
    embedding = await get_embedding_from_text(text)
    return (
        MyModel
        .all()
        .annotate(
            distance=CosineSimilarity(
                "embedding",
                embedding,
                OPENAI_VECTOR_SIZE
            )
        )
        .order_by("distance")
    )
```


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/Chr0nos/tortoise_vector",
    "name": "tortoise-vector",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": null,
    "keywords": null,
    "author": "Sebastien Nicolet",
    "author_email": "snicolet95@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/f1/6d/223d85c2f854371927f2ca6d76bbf82ba32a59a449c96bdd95e18c8739de/tortoise_vector-0.2.0.tar.gz",
    "platform": null,
    "description": "# Implementation of vector for Tortoise-ORM\nThis package adds the support of `pgvector` vectors to Tortoise-ORM as a new type of fields.\nThat way you can filter/order by cosine similarity distances for scementic search using embeddings.\nHere's an example for openai's embeddings but this will work with any kind of embeddings.\nUsage:\n\n```python\nfrom tortoise.models import Model, QuerySet\nfrom tortoise_vector.field import VectorField\nfrom tortoise_vector.expression import CosineSimilarity\n\n\nOPENAI_VECTOR_SIZE = 1536\n\n\nclass MyModel(Model):\n    # vectors have a fixed size, openai uses 1536 dimensions\n    embedding = VectorField(vector_size=OPENAI_VECTOR_SIZE)\n\n\n\nasync def get_embedding_from_text(string: str) -> list[float]:\n    ...\n\n\nasync def get_nearst_models(text: str) -> QuerySet[MyModel]:\n    embedding = await get_embedding_from_text(text)\n    return (\n        MyModel\n        .all()\n        .annotate(\n            distance=CosineSimilarity(\n                \"embedding\",\n                embedding,\n                OPENAI_VECTOR_SIZE\n            )\n        )\n        .order_by(\"distance\")\n    )\n```\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "pgvector implementation for Tortoise-ORM",
    "version": "0.2.0",
    "project_urls": {
        "Documentation": "https://github.com/Chr0nos/tortoise_vector/blob/master/tortoise_vector/README.md",
        "Homepage": "https://github.com/Chr0nos/tortoise_vector",
        "Repository": "https://github.com/Chr0nos/tortoise_vector.git"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "eec64093934eb0baca06c3fd7c171aecc3b2c8692ec7ca403728d49481aad8b2",
                "md5": "a822a391a4a9d755af6527d31daa4294",
                "sha256": "38e9b89e2357312653cd8348f92f21771716473b3922d35a13720130fb9f2fee"
            },
            "downloads": -1,
            "filename": "tortoise_vector-0.2.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "a822a391a4a9d755af6527d31daa4294",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 3940,
            "upload_time": "2025-10-10T14:21:04",
            "upload_time_iso_8601": "2025-10-10T14:21:04.387336Z",
            "url": "https://files.pythonhosted.org/packages/ee/c6/4093934eb0baca06c3fd7c171aecc3b2c8692ec7ca403728d49481aad8b2/tortoise_vector-0.2.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f16d223d85c2f854371927f2ca6d76bbf82ba32a59a449c96bdd95e18c8739de",
                "md5": "d4df48590dafda92676c3789c8ae976c",
                "sha256": "27692a5c8cd579809ac57f576c4400f53299403728e0d38ac62bc685c839c024"
            },
            "downloads": -1,
            "filename": "tortoise_vector-0.2.0.tar.gz",
            "has_sig": false,
            "md5_digest": "d4df48590dafda92676c3789c8ae976c",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 2794,
            "upload_time": "2025-10-10T14:21:05",
            "upload_time_iso_8601": "2025-10-10T14:21:05.247222Z",
            "url": "https://files.pythonhosted.org/packages/f1/6d/223d85c2f854371927f2ca6d76bbf82ba32a59a449c96bdd95e18c8739de/tortoise_vector-0.2.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-10-10 14:21:05",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Chr0nos",
    "github_project": "tortoise_vector",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "tortoise-vector"
}
        
Elapsed time: 0.80062s