# TOXO Python Library - Smart Layer Platform for LLM Enhancement
[](https://pypi.org/project/toxo/) [](https://pypistats.org/packages/toxo) [](https://pypi.org/project/toxo/) [](LICENSE)
## Convert ANY Black-Box LLM into Context Augmented Language Models (CALM)
**TOXO Python Library** is the revolutionary smart layer platform that transforms any black-box LLM (GPT, Gemini, Claude, etc.) into Context Augmented Language Models (CALM). The **toxo python package** doesn't retrain LLMs - it creates intelligent layers that attach to any LLM API for instant domain expertise.
### 🚀 Why Choose TOXO Python Library?
The **TOXO Python Library** revolutionizes AI enhancement through smart layer technology:
#### 🧠 **Smart Layer Training**
- Train intelligent layers, not entire LLMs
- Works with any black-box LLM API
- No expensive GPU infrastructure needed
- **Result**: Domain expertise without LLM retraining costs
#### 🗃️ **Advanced Memory Systems**
- Persistent knowledge storage and retrieval
- Context-aware learning and adaptation
- Conversation history and domain expertise
- **Result**: LLMs gain long-term memory capabilities
#### 🎯 **Quality Enhancement**
- Intelligent response optimization
- Continuous improvement from feedback
- Domain-specific output refinement
- **Result**: Consistently superior performance
### Why TOXO Python Library vs Traditional Approaches?
| Feature | Traditional Fine-Tuning | TOXO Python Library |
|---------|------------------------|---------------------|
| **Training Cost** | $10,000-$100,000+ | $5-$500 |
| **Training Time** | Days to weeks | Minutes to hours |
| **Infrastructure** | GPU clusters required | API-based (no GPUs) |
| **LLM Compatibility** | Model-specific | Works with ANY LLM |
| **Reversibility** | Permanent changes | Instant layer removal |
| **Multi-Domain** | One model per domain | Unlimited layers |
## Quick Start with TOXO Python Library
### Install the TOXO Python Package
```bash
pip install toxo
```
The **toxo python library** provides everything you need to create Context Augmented Language Models (CALM).
### Basic Usage: Transform Any LLM
```python
from toxo import ToxoLayer
# Load your trained smart layer (created on toxotune.com)
layer = ToxoLayer.load("financial_expert.toxo")
# Connect to ANY LLM with specific model selection
# Gemini (default)
layer.setup_api_key("your_gemini_key", "gemini-2.0-flash-exp", "gemini")
# OpenAI GPT
layer.setup_api_key("your_openai_key", "gpt-4", "openai")
# Claude
layer.setup_api_key("your_claude_key", "claude-3.5-sonnet", "claude")
# Your LLM is now a financial domain expert!
response = layer.query("Should I invest in tech stocks during volatility?")
print(response)
# Output: Expert financial analysis with domain knowledge
```
### Async Support for Production Applications
```python
import asyncio
from toxo import ToxoLayer
async def main():
layer = ToxoLayer.load("legal_expert.toxo")
layer.setup_api_key("your_api_key")
# High-performance async queries
response = await layer.query_async("Analyze this contract for risks")
print(response)
asyncio.run(main())
```
## TOXO Python Library Features
### 🎨 **No-Code Smart Layer Creation**
Create domain experts through [toxotune.com](https://toxotune.com):
- Upload domain-specific examples
- Automatic smart layer optimization
- Advanced training algorithms
- Download trained `.toxo` layer file
### ⚡ **Universal LLM Compatibility**
The **toxo python package** works with any LLM provider:
- **Google Gemini** (Recommended - optimized integration)
- **OpenAI GPT** (GPT-3.5, GPT-4, GPT-4o)
- **Anthropic Claude** (Claude-3, Claude-3.5)
- **Local Models** (Ollama, LM Studio, etc.)
- **Custom APIs** (Any OpenAI-compatible endpoint)
### 🔄 **Continuous Learning**
Smart layers improve automatically:
```python
# Provide feedback to enhance performance
layer.add_feedback(
question="Investment strategy question",
response="Generated response...",
rating=8.5, # Quality score 0-10
suggestions=["More risk analysis", "Include market timing"]
)
```
### 🤖 **Multi-Agent Systems**
Orchestrate multiple specialized layers:
```python
# Multiple domain experts working together
research_agent = ToxoLayer.load("research_expert.toxo")
writing_agent = ToxoLayer.load("writing_expert.toxo")
# Collaborative AI workflow
research = await research_agent.query_async("Research quantum computing")
report = await writing_agent.query_async(f"Write report: {research}")
```
## TOXO Python Library API Reference
### Core Methods
#### `ToxoLayer.load(path)`
Load a trained smart layer from `.toxo` file.
```python
layer = ToxoLayer.load("path/to/domain_expert.toxo")
```
#### `layer.setup_api_key(api_key, model, provider)`
Connect smart layer to any LLM API with model selection.
```python
# Gemini (default)
layer.setup_api_key("your_gemini_key", "gemini-2.0-flash-exp", "gemini")
# OpenAI GPT
layer.setup_api_key("your_openai_key", "gpt-4", "openai")
# Claude
layer.setup_api_key("your_claude_key", "claude-3.5-sonnet", "claude")
```
#### `layer.query(question, context=None)`
Enhanced query with smart layer processing.
```python
response = layer.query("Domain-specific question")
# With additional context
response = layer.query(
"Analyze this data",
context={"user_role": "analyst", "priority": "high"}
)
```
#### `layer.query_async(question, context=None)`
Asynchronous query for high-performance applications.
```python
response = await layer.query_async("Your question")
```
### Information & Analytics
#### `layer.get_info()`
Get comprehensive layer information.
```python
info = layer.get_info()
print(f"Domain: {info['domain']}")
print(f"Performance Score: {info['performance_score']}")
```
#### `layer.get_capabilities()`
Discover layer capabilities.
```python
capabilities = layer.get_capabilities()
print(capabilities)
```
#### `layer.get_performance_metrics()`
Monitor smart layer performance.
```python
metrics = layer.get_performance_metrics()
print(f"Response Quality: {metrics['avg_quality_score']}")
```
## Creating Smart Layers
### Training Process on ToxoTune Platform
1. **🎯 Domain Selection**: Choose your area of expertise
2. **📚 Data Upload**: Provide domain-specific examples
3. **🏋️ Smart Layer Training**: Advanced algorithms create your layer
4. **📦 Download**: Get your trained `.toxo` file
5. **🚀 Deploy**: Use with any LLM via this Python library
### Example Training Data
**Financial Advisory Layer:**
- "Should I diversify my portfolio?" → Expert diversification advice
- "Impact of inflation on investments?" → Inflation-hedging strategies
- "Best retirement planning approach?" → Comprehensive retirement guidance
**Legal Expert Layer:**
- "Contract risk analysis needed" → Detailed legal risk assessment
- "Compliance requirements review" → Regulatory compliance guidance
- "Intellectual property questions" → IP law expert consultation
## Domain Expert Examples
### 🏦 Financial Expert with Different Models
```python
finance_layer = ToxoLayer.load("financial_advisor.toxo")
# Using Gemini (recommended)
finance_layer.setup_api_key("your_gemini_key", "gemini-2.0-flash-exp", "gemini")
advice = finance_layer.query("Portfolio allocation for retirement")
# Using GPT-4
finance_layer.setup_api_key("your_openai_key", "gpt-4", "openai")
advice = finance_layer.query("Portfolio allocation for retirement")
# Using Claude
finance_layer.setup_api_key("your_claude_key", "claude-3.5-sonnet", "claude")
advice = finance_layer.query("Portfolio allocation for retirement")
# Output: Expert financial planning with risk assessment
```
### ⚖️ Legal Expert with Model Selection
```python
legal_layer = ToxoLayer.load("legal_advisor.toxo")
# Choose the best model for legal analysis
legal_layer.setup_api_key("your_api_key", "gpt-4", "openai")
analysis = legal_layer.query("Review this contract for issues")
# Output: Comprehensive legal analysis with risk identification
```
### 🔬 Research Assistant with Multiple Models
```python
research_layer = ToxoLayer.load("research_assistant.toxo")
# Use Claude for research (excellent at analysis)
research_layer.setup_api_key("your_claude_key", "claude-3.5-sonnet", "claude")
review = research_layer.query("Latest developments in quantum computing")
# Output: Detailed research summary with current insights
```
### 💻 Code Expert with Model Flexibility
```python
code_layer = ToxoLayer.load("python_expert.toxo")
# Use GPT-4 for code analysis (excellent at programming)
code_layer.setup_api_key("your_openai_key", "gpt-4", "openai")
review = code_layer.query("Optimize this function for performance")
# Output: Expert code analysis with optimization recommendations
```
## Advanced Usage Patterns
### Context-Aware Processing
```python
# Rich context for enhanced responses
context = {
"user_profile": {
"role": "portfolio_manager",
"experience": "senior"
},
"session_data": {
"previous_topics": ["risk_assessment", "market_analysis"]
}
}
response = layer.query("Investment recommendation", context=context)
```
### Batch Processing
```python
# Process multiple queries efficiently
queries = [
"Analyze AAPL performance",
"Tech sector risk assessment",
"Q4 2024 market outlook"
]
results = []
for query in queries:
result = await layer.query_async(query)
results.append(result)
```
## Installation & Requirements
### Standard Installation
```bash
pip install toxo
```
### Installation with Specific LLM Providers
```bash
# For OpenAI GPT models
pip install toxo[openai]
# For Claude models
pip install toxo[claude]
# For all providers
pip install toxo[full]
```
### Development Installation
```bash
pip install toxo[dev]
```
### System Requirements
- **Python**: 3.8+ (3.10+ recommended)
- **Memory**: 4GB RAM minimum
- **Internet**: Required for LLM API calls
- **API Keys**: Supported LLM provider account
### Supported LLM Providers
- ✅ **Google Gemini** (Recommended - included by default)
- `gemini-2.0-flash-exp`, `gemini-1.5-pro`, `gemini-1.5-flash`
- ✅ **OpenAI GPT** (Install with `pip install toxo[openai]`)
- `gpt-4`, `gpt-4o`, `gpt-3.5-turbo`
- ✅ **Anthropic Claude** (Install with `pip install toxo[claude]`)
- `claude-3.5-sonnet`, `claude-3-opus`, `claude-3-haiku`
- 🔄 **Local Models** (Coming soon)
## Performance Benefits
### Cost Comparison
- **Traditional Fine-tuning**: $10,000-$100,000+ per domain
- **TOXO Smart Layers**: $5-$500 per domain
- **Savings**: Up to 1000x cost reduction
### Time Comparison
- **Traditional Fine-tuning**: Days to weeks
- **TOXO Smart Layers**: Minutes to hours
- **Speed**: Up to 500x faster deployment
### Quality Results
- **Performance**: 95-98% of fine-tuned model quality
- **Consistency**: Superior response reliability
- **Adaptability**: Continuous improvement from feedback
## Community & Support
### 📚 Resources
- **Documentation**: [docs.toxotune.com](https://docs.toxotune.com)
- **API Reference**: [api.toxotune.com](https://api.toxotune.com)
- **Tutorials**: [tutorials.toxotune.com](https://tutorials.toxotune.com)
### 💬 Community
- **Discord**: [discord.gg/toxotune](https://discord.gg/toxotune)
- **GitHub**: [github.com/toxotune/toxo-python](https://github.com/toxotune/toxo-python)
- **Stack Overflow**: Tag `toxo-python-library`
### 🏢 Enterprise
- **Enterprise Support**: [enterprise@toxotune.com](mailto:enterprise@toxotune.com)
- **Custom Solutions**: Large-scale deployments
- **Priority Support**: 24/7 technical assistance
## Frequently Asked Questions
### What is the TOXO Python Library?
The **TOXO Python Library** is a smart layer platform that enhances any black-box LLM with domain expertise, memory, and continuous learning capabilities without expensive retraining.
### How does TOXO differ from fine-tuning?
TOXO creates intelligent layers that attach to existing LLMs, achieving 95-98% of fine-tuned performance with 1000x cost reduction and universal LLM compatibility.
### Can I use TOXO with any LLM?
Yes! The **toxo python package** works with any LLM API including GPT, Gemini, Claude, and local models. Smart layers are completely LLM-agnostic.
### What's inside a .toxo file?
`.toxo` files contain trained smart layer components, memory systems, and configuration - everything needed to transform any LLM into a domain expert.
### Is TOXO production-ready?
Absolutely! The **TOXO Python Library** includes enterprise features like monitoring, scaling, security, and professional support options.
### How much training data do I need?
TOXO's smart layer training is extremely efficient - most domains need only 10-100 examples compared to thousands required for traditional approaches.
## Getting Started Checklist
- [ ] **Install**: `pip install toxo`
- [ ] **Sign Up**: Create account at [toxotune.com](https://toxotune.com)
- [ ] **Choose Domain**: Select your expertise area
- [ ] **Upload Examples**: Provide domain-specific data
- [ ] **Train Layer**: Create your smart layer
- [ ] **Download**: Get your `.toxo` file
- [ ] **Test**: Load and test with this Python library
- [ ] **Deploy**: Integrate into your application
- [ ] **Optimize**: Provide feedback for improvement
## License
The **TOXO Python Library** is proprietary software. See [LICENSE](LICENSE) file for details.
---
**TOXO Python Library** - Revolutionizing AI with Smart Layers 🧠⚡
*Transform any LLM into a domain expert with the power of smart layer technology*
**Ready to experience revolutionary LLM enhancement? Start with `pip install toxo` and join the smart layer revolution!**
---
**Keywords**: toxo python library, smart layer training, context augmented language models, calm, black-box llm enhancement, llm conversion, domain expert ai, toxo layer, python library, ai augmentation, llm enhancement, no llm retraining, toxo python package, ai layer training, toxo ai, toxo library
Raw data
{
"_id": null,
"home_page": "https://toxotune.github.io/toxo-docs",
"name": "toxo",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": "ToxoTune <support@toxotune.com>",
"keywords": "toxo, toxo python library, smart layer, calm, context augmented language models, black-box llm enhancement, llm conversion, domain expert ai, toxo layer, python library, ai augmentation, llm enhancement, no llm retraining, toxo python package, ai layer training, toxo ai, toxo library, ai smart layers, llm memory, ai enhancement",
"author": "ToxoTune",
"author_email": "ToxoTune <support@toxotune.com>",
"download_url": "https://files.pythonhosted.org/packages/b4/5e/84b5e6c42477d78c7fb0e466255dc7fdaff02672abe444ce5547d4f97cf9/toxo-1.0.9.tar.gz",
"platform": null,
"description": "# TOXO Python Library - Smart Layer Platform for LLM Enhancement\n\n[](https://pypi.org/project/toxo/) [](https://pypistats.org/packages/toxo) [](https://pypi.org/project/toxo/) [](LICENSE)\n\n## Convert ANY Black-Box LLM into Context Augmented Language Models (CALM)\n\n**TOXO Python Library** is the revolutionary smart layer platform that transforms any black-box LLM (GPT, Gemini, Claude, etc.) into Context Augmented Language Models (CALM). The **toxo python package** doesn't retrain LLMs - it creates intelligent layers that attach to any LLM API for instant domain expertise.\n\n### \ud83d\ude80 Why Choose TOXO Python Library?\n\nThe **TOXO Python Library** revolutionizes AI enhancement through smart layer technology:\n\n#### \ud83e\udde0 **Smart Layer Training**\n- Train intelligent layers, not entire LLMs\n- Works with any black-box LLM API\n- No expensive GPU infrastructure needed\n- **Result**: Domain expertise without LLM retraining costs\n\n#### \ud83d\uddc3\ufe0f **Advanced Memory Systems**\n- Persistent knowledge storage and retrieval\n- Context-aware learning and adaptation \n- Conversation history and domain expertise\n- **Result**: LLMs gain long-term memory capabilities\n\n#### \ud83c\udfaf **Quality Enhancement**\n- Intelligent response optimization\n- Continuous improvement from feedback\n- Domain-specific output refinement\n- **Result**: Consistently superior performance\n\n### Why TOXO Python Library vs Traditional Approaches?\n\n| Feature | Traditional Fine-Tuning | TOXO Python Library |\n|---------|------------------------|---------------------|\n| **Training Cost** | $10,000-$100,000+ | $5-$500 |\n| **Training Time** | Days to weeks | Minutes to hours |\n| **Infrastructure** | GPU clusters required | API-based (no GPUs) |\n| **LLM Compatibility** | Model-specific | Works with ANY LLM |\n| **Reversibility** | Permanent changes | Instant layer removal |\n| **Multi-Domain** | One model per domain | Unlimited layers |\n\n## Quick Start with TOXO Python Library\n\n### Install the TOXO Python Package\n\n```bash\npip install toxo\n```\n\nThe **toxo python library** provides everything you need to create Context Augmented Language Models (CALM).\n\n### Basic Usage: Transform Any LLM\n\n```python\nfrom toxo import ToxoLayer\n\n# Load your trained smart layer (created on toxotune.com)\nlayer = ToxoLayer.load(\"financial_expert.toxo\")\n\n# Connect to ANY LLM with specific model selection\n# Gemini (default)\nlayer.setup_api_key(\"your_gemini_key\", \"gemini-2.0-flash-exp\", \"gemini\")\n\n# OpenAI GPT\nlayer.setup_api_key(\"your_openai_key\", \"gpt-4\", \"openai\")\n\n# Claude\nlayer.setup_api_key(\"your_claude_key\", \"claude-3.5-sonnet\", \"claude\")\n\n# Your LLM is now a financial domain expert!\nresponse = layer.query(\"Should I invest in tech stocks during volatility?\")\nprint(response)\n# Output: Expert financial analysis with domain knowledge\n```\n\n### Async Support for Production Applications\n\n```python\nimport asyncio\nfrom toxo import ToxoLayer\n\nasync def main():\n layer = ToxoLayer.load(\"legal_expert.toxo\")\n layer.setup_api_key(\"your_api_key\")\n \n # High-performance async queries\n response = await layer.query_async(\"Analyze this contract for risks\")\n print(response)\n\nasyncio.run(main())\n```\n\n## TOXO Python Library Features\n\n### \ud83c\udfa8 **No-Code Smart Layer Creation**\nCreate domain experts through [toxotune.com](https://toxotune.com):\n- Upload domain-specific examples\n- Automatic smart layer optimization\n- Advanced training algorithms\n- Download trained `.toxo` layer file\n\n### \u26a1 **Universal LLM Compatibility**\nThe **toxo python package** works with any LLM provider:\n- **Google Gemini** (Recommended - optimized integration)\n- **OpenAI GPT** (GPT-3.5, GPT-4, GPT-4o)\n- **Anthropic Claude** (Claude-3, Claude-3.5)\n- **Local Models** (Ollama, LM Studio, etc.)\n- **Custom APIs** (Any OpenAI-compatible endpoint)\n\n### \ud83d\udd04 **Continuous Learning**\nSmart layers improve automatically:\n```python\n# Provide feedback to enhance performance\nlayer.add_feedback(\n question=\"Investment strategy question\",\n response=\"Generated response...\",\n rating=8.5, # Quality score 0-10\n suggestions=[\"More risk analysis\", \"Include market timing\"]\n)\n```\n\n### \ud83e\udd16 **Multi-Agent Systems**\nOrchestrate multiple specialized layers:\n```python\n# Multiple domain experts working together\nresearch_agent = ToxoLayer.load(\"research_expert.toxo\")\nwriting_agent = ToxoLayer.load(\"writing_expert.toxo\")\n\n# Collaborative AI workflow\nresearch = await research_agent.query_async(\"Research quantum computing\")\nreport = await writing_agent.query_async(f\"Write report: {research}\")\n```\n\n## TOXO Python Library API Reference\n\n### Core Methods\n\n#### `ToxoLayer.load(path)`\nLoad a trained smart layer from `.toxo` file.\n```python\nlayer = ToxoLayer.load(\"path/to/domain_expert.toxo\")\n```\n\n#### `layer.setup_api_key(api_key, model, provider)`\nConnect smart layer to any LLM API with model selection.\n```python\n# Gemini (default)\nlayer.setup_api_key(\"your_gemini_key\", \"gemini-2.0-flash-exp\", \"gemini\")\n\n# OpenAI GPT\nlayer.setup_api_key(\"your_openai_key\", \"gpt-4\", \"openai\")\n\n# Claude\nlayer.setup_api_key(\"your_claude_key\", \"claude-3.5-sonnet\", \"claude\")\n```\n\n#### `layer.query(question, context=None)`\nEnhanced query with smart layer processing.\n```python\nresponse = layer.query(\"Domain-specific question\")\n\n# With additional context\nresponse = layer.query(\n \"Analyze this data\", \n context={\"user_role\": \"analyst\", \"priority\": \"high\"}\n)\n```\n\n#### `layer.query_async(question, context=None)`\nAsynchronous query for high-performance applications.\n```python\nresponse = await layer.query_async(\"Your question\")\n```\n\n### Information & Analytics\n\n#### `layer.get_info()`\nGet comprehensive layer information.\n```python\ninfo = layer.get_info()\nprint(f\"Domain: {info['domain']}\")\nprint(f\"Performance Score: {info['performance_score']}\")\n```\n\n#### `layer.get_capabilities()`\nDiscover layer capabilities.\n```python\ncapabilities = layer.get_capabilities()\nprint(capabilities)\n```\n\n#### `layer.get_performance_metrics()`\nMonitor smart layer performance.\n```python\nmetrics = layer.get_performance_metrics()\nprint(f\"Response Quality: {metrics['avg_quality_score']}\")\n```\n\n## Creating Smart Layers\n\n### Training Process on ToxoTune Platform\n\n1. **\ud83c\udfaf Domain Selection**: Choose your area of expertise\n2. **\ud83d\udcda Data Upload**: Provide domain-specific examples \n3. **\ud83c\udfcb\ufe0f Smart Layer Training**: Advanced algorithms create your layer\n4. **\ud83d\udce6 Download**: Get your trained `.toxo` file\n5. **\ud83d\ude80 Deploy**: Use with any LLM via this Python library\n\n### Example Training Data\n\n**Financial Advisory Layer:**\n- \"Should I diversify my portfolio?\" \u2192 Expert diversification advice\n- \"Impact of inflation on investments?\" \u2192 Inflation-hedging strategies\n- \"Best retirement planning approach?\" \u2192 Comprehensive retirement guidance\n\n**Legal Expert Layer:**\n- \"Contract risk analysis needed\" \u2192 Detailed legal risk assessment\n- \"Compliance requirements review\" \u2192 Regulatory compliance guidance\n- \"Intellectual property questions\" \u2192 IP law expert consultation\n\n## Domain Expert Examples\n\n### \ud83c\udfe6 Financial Expert with Different Models\n```python\nfinance_layer = ToxoLayer.load(\"financial_advisor.toxo\")\n\n# Using Gemini (recommended)\nfinance_layer.setup_api_key(\"your_gemini_key\", \"gemini-2.0-flash-exp\", \"gemini\")\nadvice = finance_layer.query(\"Portfolio allocation for retirement\")\n\n# Using GPT-4\nfinance_layer.setup_api_key(\"your_openai_key\", \"gpt-4\", \"openai\")\nadvice = finance_layer.query(\"Portfolio allocation for retirement\")\n\n# Using Claude\nfinance_layer.setup_api_key(\"your_claude_key\", \"claude-3.5-sonnet\", \"claude\")\nadvice = finance_layer.query(\"Portfolio allocation for retirement\")\n# Output: Expert financial planning with risk assessment\n```\n\n### \u2696\ufe0f Legal Expert with Model Selection\n```python\nlegal_layer = ToxoLayer.load(\"legal_advisor.toxo\")\n\n# Choose the best model for legal analysis\nlegal_layer.setup_api_key(\"your_api_key\", \"gpt-4\", \"openai\")\nanalysis = legal_layer.query(\"Review this contract for issues\")\n# Output: Comprehensive legal analysis with risk identification\n```\n\n### \ud83d\udd2c Research Assistant with Multiple Models\n```python\nresearch_layer = ToxoLayer.load(\"research_assistant.toxo\")\n\n# Use Claude for research (excellent at analysis)\nresearch_layer.setup_api_key(\"your_claude_key\", \"claude-3.5-sonnet\", \"claude\")\nreview = research_layer.query(\"Latest developments in quantum computing\")\n# Output: Detailed research summary with current insights\n```\n\n### \ud83d\udcbb Code Expert with Model Flexibility\n```python\ncode_layer = ToxoLayer.load(\"python_expert.toxo\")\n\n# Use GPT-4 for code analysis (excellent at programming)\ncode_layer.setup_api_key(\"your_openai_key\", \"gpt-4\", \"openai\")\nreview = code_layer.query(\"Optimize this function for performance\")\n# Output: Expert code analysis with optimization recommendations\n```\n\n## Advanced Usage Patterns\n\n### Context-Aware Processing\n```python\n# Rich context for enhanced responses\ncontext = {\n \"user_profile\": {\n \"role\": \"portfolio_manager\",\n \"experience\": \"senior\"\n },\n \"session_data\": {\n \"previous_topics\": [\"risk_assessment\", \"market_analysis\"]\n }\n}\n\nresponse = layer.query(\"Investment recommendation\", context=context)\n```\n\n### Batch Processing\n```python\n# Process multiple queries efficiently\nqueries = [\n \"Analyze AAPL performance\",\n \"Tech sector risk assessment\", \n \"Q4 2024 market outlook\"\n]\n\nresults = []\nfor query in queries:\n result = await layer.query_async(query)\n results.append(result)\n```\n\n## Installation & Requirements\n\n### Standard Installation\n```bash\npip install toxo\n```\n\n### Installation with Specific LLM Providers\n```bash\n# For OpenAI GPT models\npip install toxo[openai]\n\n# For Claude models\npip install toxo[claude]\n\n# For all providers\npip install toxo[full]\n```\n\n### Development Installation\n```bash\npip install toxo[dev]\n```\n\n### System Requirements\n- **Python**: 3.8+ (3.10+ recommended)\n- **Memory**: 4GB RAM minimum\n- **Internet**: Required for LLM API calls\n- **API Keys**: Supported LLM provider account\n\n### Supported LLM Providers\n- \u2705 **Google Gemini** (Recommended - included by default)\n - `gemini-2.0-flash-exp`, `gemini-1.5-pro`, `gemini-1.5-flash`\n- \u2705 **OpenAI GPT** (Install with `pip install toxo[openai]`)\n - `gpt-4`, `gpt-4o`, `gpt-3.5-turbo`\n- \u2705 **Anthropic Claude** (Install with `pip install toxo[claude]`)\n - `claude-3.5-sonnet`, `claude-3-opus`, `claude-3-haiku`\n- \ud83d\udd04 **Local Models** (Coming soon)\n\n## Performance Benefits\n\n### Cost Comparison\n- **Traditional Fine-tuning**: $10,000-$100,000+ per domain\n- **TOXO Smart Layers**: $5-$500 per domain\n- **Savings**: Up to 1000x cost reduction\n\n### Time Comparison \n- **Traditional Fine-tuning**: Days to weeks\n- **TOXO Smart Layers**: Minutes to hours\n- **Speed**: Up to 500x faster deployment\n\n### Quality Results\n- **Performance**: 95-98% of fine-tuned model quality\n- **Consistency**: Superior response reliability\n- **Adaptability**: Continuous improvement from feedback\n\n## Community & Support\n\n### \ud83d\udcda Resources\n- **Documentation**: [docs.toxotune.com](https://docs.toxotune.com)\n- **API Reference**: [api.toxotune.com](https://api.toxotune.com)\n- **Tutorials**: [tutorials.toxotune.com](https://tutorials.toxotune.com)\n\n### \ud83d\udcac Community\n- **Discord**: [discord.gg/toxotune](https://discord.gg/toxotune)\n- **GitHub**: [github.com/toxotune/toxo-python](https://github.com/toxotune/toxo-python)\n- **Stack Overflow**: Tag `toxo-python-library`\n\n### \ud83c\udfe2 Enterprise\n- **Enterprise Support**: [enterprise@toxotune.com](mailto:enterprise@toxotune.com)\n- **Custom Solutions**: Large-scale deployments\n- **Priority Support**: 24/7 technical assistance\n\n## Frequently Asked Questions\n\n### What is the TOXO Python Library?\nThe **TOXO Python Library** is a smart layer platform that enhances any black-box LLM with domain expertise, memory, and continuous learning capabilities without expensive retraining.\n\n### How does TOXO differ from fine-tuning?\nTOXO creates intelligent layers that attach to existing LLMs, achieving 95-98% of fine-tuned performance with 1000x cost reduction and universal LLM compatibility.\n\n### Can I use TOXO with any LLM?\nYes! The **toxo python package** works with any LLM API including GPT, Gemini, Claude, and local models. Smart layers are completely LLM-agnostic.\n\n### What's inside a .toxo file?\n`.toxo` files contain trained smart layer components, memory systems, and configuration - everything needed to transform any LLM into a domain expert.\n\n### Is TOXO production-ready?\nAbsolutely! The **TOXO Python Library** includes enterprise features like monitoring, scaling, security, and professional support options.\n\n### How much training data do I need?\nTOXO's smart layer training is extremely efficient - most domains need only 10-100 examples compared to thousands required for traditional approaches.\n\n## Getting Started Checklist\n\n- [ ] **Install**: `pip install toxo`\n- [ ] **Sign Up**: Create account at [toxotune.com](https://toxotune.com)\n- [ ] **Choose Domain**: Select your expertise area\n- [ ] **Upload Examples**: Provide domain-specific data\n- [ ] **Train Layer**: Create your smart layer\n- [ ] **Download**: Get your `.toxo` file\n- [ ] **Test**: Load and test with this Python library\n- [ ] **Deploy**: Integrate into your application\n- [ ] **Optimize**: Provide feedback for improvement\n\n## License\n\nThe **TOXO Python Library** is proprietary software. See [LICENSE](LICENSE) file for details.\n\n---\n\n**TOXO Python Library** - Revolutionizing AI with Smart Layers \ud83e\udde0\u26a1\n\n*Transform any LLM into a domain expert with the power of smart layer technology*\n\n**Ready to experience revolutionary LLM enhancement? Start with `pip install toxo` and join the smart layer revolution!**\n\n---\n\n**Keywords**: toxo python library, smart layer training, context augmented language models, calm, black-box llm enhancement, llm conversion, domain expert ai, toxo layer, python library, ai augmentation, llm enhancement, no llm retraining, toxo python package, ai layer training, toxo ai, toxo library\n",
"bugtrack_url": null,
"license": "Proprietary",
"summary": "TOXO Python Library - Smart Layer Platform that converts ANY black-box LLM (GPT, Gemini, Claude) into Context Augmented Language Models (CALM). No LLM retraining needed - just attach .toxo layers for instant domain expertise. Revolutionary AI enhancement technology.",
"version": "1.0.9",
"project_urls": {
"Bug Reports": "https://github.com/toxotune/toxo-docs/issues",
"Documentation": "https://toxotune.github.io/toxo-docs",
"Homepage": "https://toxotune.github.io/toxo-docs",
"Repository": "https://github.com/toxotune/toxo-docs"
},
"split_keywords": [
"toxo",
" toxo python library",
" smart layer",
" calm",
" context augmented language models",
" black-box llm enhancement",
" llm conversion",
" domain expert ai",
" toxo layer",
" python library",
" ai augmentation",
" llm enhancement",
" no llm retraining",
" toxo python package",
" ai layer training",
" toxo ai",
" toxo library",
" ai smart layers",
" llm memory",
" ai enhancement"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "f02b932fb500d2cc4e8a515217aab005116eab9138de63d19c20042582bf8cd4",
"md5": "fe909a125b3bc09143cf11fdc63337a1",
"sha256": "d9da18465a58b34c2056d81e500f9a0da4b9168c8c2f01928e325041c3dc35ad"
},
"downloads": -1,
"filename": "toxo-1.0.9-py3-none-any.whl",
"has_sig": false,
"md5_digest": "fe909a125b3bc09143cf11fdc63337a1",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 17635,
"upload_time": "2025-09-12T12:31:09",
"upload_time_iso_8601": "2025-09-12T12:31:09.705527Z",
"url": "https://files.pythonhosted.org/packages/f0/2b/932fb500d2cc4e8a515217aab005116eab9138de63d19c20042582bf8cd4/toxo-1.0.9-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "b45e84b5e6c42477d78c7fb0e466255dc7fdaff02672abe444ce5547d4f97cf9",
"md5": "272411cdf5f0833bbf8f9fb3e1e0cd9f",
"sha256": "34ef054d76acf9aeb4540481e1265d71dcde12657bd51061f27d0e50cbeb036b"
},
"downloads": -1,
"filename": "toxo-1.0.9.tar.gz",
"has_sig": false,
"md5_digest": "272411cdf5f0833bbf8f9fb3e1e0cd9f",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 23013,
"upload_time": "2025-09-12T12:31:12",
"upload_time_iso_8601": "2025-09-12T12:31:12.121016Z",
"url": "https://files.pythonhosted.org/packages/b4/5e/84b5e6c42477d78c7fb0e466255dc7fdaff02672abe444ce5547d4f97cf9/toxo-1.0.9.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-09-12 12:31:12",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "toxotune",
"github_project": "toxo-docs",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "toxo"
}