tradestream


Nametradestream JSON
Version 0.5.10 PyPI version JSON
download
home_pageNone
SummaryA Python application with a Dash frontend, services to fetch market data, and an API server.
upload_time2024-08-15 14:16:25
maintainerNone
docs_urlNone
authorMac Anderson
requires_python<4.0.0,>=3.12.5
licenseProprietary
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            ### Machine Learning Models

Tradestream uses a variety of machine learning models to predict the future price of a stock. The models are trained on historical data and use a variety of features to make predictions. The models are trained on a daily basis and the predictions are made on a minute-by-minute basis.

#### Machine Learning Libraries

Tradestream researched the following machine learning libraries:

- [TensorFlow](https://www.tensorflow.org/)
- [LSTM](https://www.tensorflow.org/api_docs/python/tf/keras/layers/LSTM)
- [GRU](https://www.tensorflow.org/api_docs/python/tf/keras/layers/GRU)
- [Transformer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Transformer)
- [PyTorch](https://pytorch.org/)
- [LSTM](https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html)
- [GRU](https://pytorch.org/docs/stable/generated/torch.nn.GRU.html)
- [Transformer](https://pytorch.org/docs/stable/generated/torch.nn.Transformer.html)
- [Scikit-learn](https://scikit-learn.org/)
- [Ridge](https://scikit-learn.org/stable/modules/linear_model.html#ridge-regression)
- [Lasso](https://scikit-learn.org/stable/modules/linear_model.html#lasso)
- [ElasticNet](https://scikit-learn.org/stable/modules/linear_model.html#elastic-net)
- [RandomForest](https://scikit-learn.org/stable/modules/ensemble.html#random-forests)
- [GradientBoosting](https://scikit-learn.org/stable/modules/ensemble.html#gradient-boosting)
- [AdaBoost](https://scikit-learn.org/stable/modules/ensemble.html#adaboost)
- [Stacking](https://scikit-learn.org/stable/modules/ensemble.html#stacking)
- [Voting](https://scikit-learn.org/stable/modules/ensemble.html#voting)
- [Bagging](https://scikit-learn.org/stable/modules/ensemble.html#bagging)
- [ExtraTrees](https://scikit-learn.org/stable/modules/ensemble.html#extra-trees)
- [IsolationForest](https://scikit-learn.org/stable/modules/ensemble.html#isolation-forest)
- [LocalOutlierFactor](https://scikit-learn.org/stable/modules/neighbors.html#local-outlier-factor)
- [XGBoost](https://xgboost.readthedocs.io/en/stable/)
- [XGBRegressor](https://xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.XGBRegressor)
- [XGBClassifier](https://xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.XGBClassifier)
- [LightGBM](https://lightgbm.readthedocs.io/en/latest/)
- [LGBMRegressor](https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMRegressor.html)
- [LGBMClassifier](https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMClassifier.html)
- [CatBoost](https://catboost.ai/)
- [CatBoostRegressor](https://catboost.ai/docs/concepts/python-reference_catboostregressor.html)
- [CatBoostClassifier](https://catboost.ai/docs/concepts/python-reference_catboostclassifier.html)
- [Prophet](https://facebook.github.io/prophet/)
- [ProphetRegressor](https://facebook.github.io/prophet/docs/python/python_api.html#prophet.ProphetRegressor)
- [ProphetClassifier](https://facebook.github.io/prophet/docs/python/python_api.html#prophet.ProphetClassifier)


### Contributing to Tradestream

We welcome contributions to Tradestream! Please open an issue or submit a pull request with your changes. You can find the pull request template in the `.github/pull_request_template.md` file. If you have any questions, please open an issue and we will be happy to help. You can also find us on the [Tradestream Discord](https://discord.gg/tradestream) if you have any questions. It is very important that you follow the [Contributing Guidelines](CONTRIBUTING.md) when contributing to Tradestream. We look forward to seeing your contributions!

### Project Structure

Tradestream is a Python application that uses the Dash framework for the frontend and the Flask framework for the backend. The application is deployed to Heroku. The project is organized as follows:

``` python
tradestream/                 # Main directory for the application
│
├── dash_app/                # Directory for the Dash app (frontend)
│   ├── __init__.py          # Initialize the Dash app, include authentication
│   ├── layout.py            # Define the layout of the Dash app
│   ├── callbacks.py         # Define callbacks for interactivity
│   └── authentication.py    # Handle user authentication
│
├── services/                # Directory for services that fetch real-time market data
│   ├── __init__.py          # Initialization for services
│   ├── market_fetcher.py    # Code to fetch real-time data from the markets
│   └── scheduler.py         # Schedule tasks to fetch data at intervals
│
├── api/                     # Directory for the API server
│   ├── __init__.py          # Initialization for API server
│   ├── routes.py            # Define API routes
│   ├── models.py            # Define MongoDB models using ODM (like PyMongo or Motor)
│   └── views.py             # API views (logic to handle requests)
├── .env                     # DOTENV file
├── Procfile                 # Define process types for Heroku (e.g., web, worker)
├── requirements.txt         # Python dependencies
└── build.sh                 # Shell script to build the app
└── start.sh                 # Shell script to start the app
└── pyproject.toml           # Python package configuration
```
            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "tradestream",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0.0,>=3.12.5",
    "maintainer_email": null,
    "keywords": null,
    "author": "Mac Anderson",
    "author_email": "mac@macanderson.com",
    "download_url": "https://files.pythonhosted.org/packages/7e/d1/97c2b2d5c7bb8f8ff8c8946e31a3115351069c6ba12c1940b7b1fa81f2f1/tradestream-0.5.10.tar.gz",
    "platform": null,
    "description": "### Machine Learning Models\n\nTradestream uses a variety of machine learning models to predict the future price of a stock. The models are trained on historical data and use a variety of features to make predictions. The models are trained on a daily basis and the predictions are made on a minute-by-minute basis.\n\n#### Machine Learning Libraries\n\nTradestream researched the following machine learning libraries:\n\n- [TensorFlow](https://www.tensorflow.org/)\n- [LSTM](https://www.tensorflow.org/api_docs/python/tf/keras/layers/LSTM)\n- [GRU](https://www.tensorflow.org/api_docs/python/tf/keras/layers/GRU)\n- [Transformer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Transformer)\n- [PyTorch](https://pytorch.org/)\n- [LSTM](https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html)\n- [GRU](https://pytorch.org/docs/stable/generated/torch.nn.GRU.html)\n- [Transformer](https://pytorch.org/docs/stable/generated/torch.nn.Transformer.html)\n- [Scikit-learn](https://scikit-learn.org/)\n- [Ridge](https://scikit-learn.org/stable/modules/linear_model.html#ridge-regression)\n- [Lasso](https://scikit-learn.org/stable/modules/linear_model.html#lasso)\n- [ElasticNet](https://scikit-learn.org/stable/modules/linear_model.html#elastic-net)\n- [RandomForest](https://scikit-learn.org/stable/modules/ensemble.html#random-forests)\n- [GradientBoosting](https://scikit-learn.org/stable/modules/ensemble.html#gradient-boosting)\n- [AdaBoost](https://scikit-learn.org/stable/modules/ensemble.html#adaboost)\n- [Stacking](https://scikit-learn.org/stable/modules/ensemble.html#stacking)\n- [Voting](https://scikit-learn.org/stable/modules/ensemble.html#voting)\n- [Bagging](https://scikit-learn.org/stable/modules/ensemble.html#bagging)\n- [ExtraTrees](https://scikit-learn.org/stable/modules/ensemble.html#extra-trees)\n- [IsolationForest](https://scikit-learn.org/stable/modules/ensemble.html#isolation-forest)\n- [LocalOutlierFactor](https://scikit-learn.org/stable/modules/neighbors.html#local-outlier-factor)\n- [XGBoost](https://xgboost.readthedocs.io/en/stable/)\n- [XGBRegressor](https://xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.XGBRegressor)\n- [XGBClassifier](https://xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.XGBClassifier)\n- [LightGBM](https://lightgbm.readthedocs.io/en/latest/)\n- [LGBMRegressor](https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMRegressor.html)\n- [LGBMClassifier](https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMClassifier.html)\n- [CatBoost](https://catboost.ai/)\n- [CatBoostRegressor](https://catboost.ai/docs/concepts/python-reference_catboostregressor.html)\n- [CatBoostClassifier](https://catboost.ai/docs/concepts/python-reference_catboostclassifier.html)\n- [Prophet](https://facebook.github.io/prophet/)\n- [ProphetRegressor](https://facebook.github.io/prophet/docs/python/python_api.html#prophet.ProphetRegressor)\n- [ProphetClassifier](https://facebook.github.io/prophet/docs/python/python_api.html#prophet.ProphetClassifier)\n\n\n### Contributing to Tradestream\n\nWe welcome contributions to Tradestream! Please open an issue or submit a pull request with your changes. You can find the pull request template in the `.github/pull_request_template.md` file. If you have any questions, please open an issue and we will be happy to help. You can also find us on the [Tradestream Discord](https://discord.gg/tradestream) if you have any questions. It is very important that you follow the [Contributing Guidelines](CONTRIBUTING.md) when contributing to Tradestream. We look forward to seeing your contributions!\n\n### Project Structure\n\nTradestream is a Python application that uses the Dash framework for the frontend and the Flask framework for the backend. The application is deployed to Heroku. The project is organized as follows:\n\n``` python\ntradestream/                 # Main directory for the application\n\u2502\n\u251c\u2500\u2500 dash_app/                # Directory for the Dash app (frontend)\n\u2502   \u251c\u2500\u2500 __init__.py          # Initialize the Dash app, include authentication\n\u2502   \u251c\u2500\u2500 layout.py            # Define the layout of the Dash app\n\u2502   \u251c\u2500\u2500 callbacks.py         # Define callbacks for interactivity\n\u2502   \u2514\u2500\u2500 authentication.py    # Handle user authentication\n\u2502\n\u251c\u2500\u2500 services/                # Directory for services that fetch real-time market data\n\u2502   \u251c\u2500\u2500 __init__.py          # Initialization for services\n\u2502   \u251c\u2500\u2500 market_fetcher.py    # Code to fetch real-time data from the markets\n\u2502   \u2514\u2500\u2500 scheduler.py         # Schedule tasks to fetch data at intervals\n\u2502\n\u251c\u2500\u2500 api/                     # Directory for the API server\n\u2502   \u251c\u2500\u2500 __init__.py          # Initialization for API server\n\u2502   \u251c\u2500\u2500 routes.py            # Define API routes\n\u2502   \u251c\u2500\u2500 models.py            # Define MongoDB models using ODM (like PyMongo or Motor)\n\u2502   \u2514\u2500\u2500 views.py             # API views (logic to handle requests)\n\u251c\u2500\u2500 .env                     # DOTENV file\n\u251c\u2500\u2500 Procfile                 # Define process types for Heroku (e.g., web, worker)\n\u251c\u2500\u2500 requirements.txt         # Python dependencies\n\u2514\u2500\u2500 build.sh                 # Shell script to build the app\n\u2514\u2500\u2500 start.sh                 # Shell script to start the app\n\u2514\u2500\u2500 pyproject.toml           # Python package configuration\n```",
    "bugtrack_url": null,
    "license": "Proprietary",
    "summary": "A Python application with a Dash frontend, services to fetch market data, and an API server.",
    "version": "0.5.10",
    "project_urls": null,
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d7b060a5e03f8c2092372ad5d196bd89422de347f453b6ca5c2bc3b570508483",
                "md5": "bdfb35736cb1f3c3163ef4e7fcce0e96",
                "sha256": "bc17ba21c4d6570214894f5fa6c9a1c20e0c9079cdaed5a6c8bd6e3af400861a"
            },
            "downloads": -1,
            "filename": "tradestream-0.5.10-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "bdfb35736cb1f3c3163ef4e7fcce0e96",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0.0,>=3.12.5",
            "size": 16263,
            "upload_time": "2024-08-15T14:16:23",
            "upload_time_iso_8601": "2024-08-15T14:16:23.692165Z",
            "url": "https://files.pythonhosted.org/packages/d7/b0/60a5e03f8c2092372ad5d196bd89422de347f453b6ca5c2bc3b570508483/tradestream-0.5.10-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "7ed197c2b2d5c7bb8f8ff8c8946e31a3115351069c6ba12c1940b7b1fa81f2f1",
                "md5": "f6194e73ffa60e85716240483fb9218a",
                "sha256": "00ae10e7781950b8cd25347759cfbcaef557194e6dcd7de6f748fa0d06eb2331"
            },
            "downloads": -1,
            "filename": "tradestream-0.5.10.tar.gz",
            "has_sig": false,
            "md5_digest": "f6194e73ffa60e85716240483fb9218a",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0.0,>=3.12.5",
            "size": 14694,
            "upload_time": "2024-08-15T14:16:25",
            "upload_time_iso_8601": "2024-08-15T14:16:25.289394Z",
            "url": "https://files.pythonhosted.org/packages/7e/d1/97c2b2d5c7bb8f8ff8c8946e31a3115351069c6ba12c1940b7b1fa81f2f1/tradestream-0.5.10.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-08-15 14:16:25",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "tradestream"
}
        
Elapsed time: 1.48257s