[](https://github.com/tradingstrategy-ai/trading-strategy/actions/workflows/python-app.yml)
[](https://github.com/tradingstrategy-ai/trading-strategy/actions/workflows/pip-install.yml)
[](https://tradingstrategy.ai)
# Trading Strategy framework for Python
Trading Strategy framework is a Python framework for algorithmic trading on decentralised exchanges.
It is using [backtesting data](https://tradingstrategy.ai/trading-view/backtesting) and [real-time price feeds](https://tradingstrategy.ai/trading-view)
from [Trading Strategy Protocol](https://tradingstrategy.ai/).
# Use cases
* Analyse cryptocurrency investment opportunities on [decentralised exchanges (DEXes)](https://tradingstrategy.ai/trading-view/exchanges)
* Creating trading algorithms and trading bots that trade on DEXes
* Deploy trading strategies as on-chain smart contracts where users can invest and withdraw with their wallets
# Features
* Supports multiple blockchains like [Ethereum mainnet](https://tradingstrategy.ai/trading-view/ethereum), [Binance Smart Chain](https://tradingstrategy.ai/trading-view/binance) and [Polygon](https://tradingstrategy.ai/trading-view/polygon)
* Access trading data from on-chain decentralised exchanges like [SushiSwap](https://tradingstrategy.ai/trading-view/ethereum/sushiswap), [QuickSwap](https://tradingstrategy.ai/trading-view/polygon/quickswap) and [PancakeSwap](https://tradingstrategy.ai/trading-view/binance/pancakeswap-v2)
* Integration with [Jupyter Notebook](https://jupyter.org/) for easy manipulation of data
* Utilise Python quantita frameworks like [Backtrader](https://github.com/tradingstrategy-ai/backtrader) and [QSTrader](https://github.com/tradingstrategy-ai/qstrader) to create, analyse and backtest DEX trading algorithms
# Example and getting started
See [the Getting Started notebook](https://tradingstrategy.ai/docs/programming/examples/getting-started.html) and the rest of the [Trading Strategy documentation](https://tradingstrategy.ai/docs/).
# Prerequisites
Python 3.9+
# Installing the package
**Note**: Unless you are an experienced Python developer, [the suggested usage of Trading Algorithm framework is using Google Colab hosted environments](https://tradingstrategy.ai/docs/programming/examples/getting-started.html).
You can install this package with `poetry` or `pip`
```shell
poetry add trading-strategy
```
```shell
pip install trading-strategy
```
For [QSTrader](https://pypi.org/project/trading-strategy-qstrader/) based trading algorithm support you need to install the related optional dependencies:
```shell
poetry add trading-strategy[qstrader]
```
# Documentation
[Read documentation online](https://tradingstrategy.ai/docs/).
Community
---------
* [Trading Strategy website](https://tradingstrategy.ai)
* [Blog](https://tradingstrategy.ai/blog)
* [Twitter](https://twitter.com/TradingProtocol)
* [Discord](https://tradingstrategy.ai/community#discord)
* [Telegram channel](https://t.me/trading_protocol)
* [Changelog and version history](https://github.com/tradingstrategy-ai/trading-strategy/blob/master/CHANGELOG.md)
[Read more documentation how to develop this package](https://tradingstrategy.ai/docs/programming/development.html).
# License
GNU AGPL 3.0.
Raw data
{
"_id": null,
"home_page": "https://tradingstrategy.ai",
"name": "trading-strategy",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.9,<3.11",
"maintainer_email": "",
"keywords": "algorithmic trading,ethereum,cryptocurrency,uniswap,quantitative finance,binance,blockchain,pancakeswap,polygon,web3",
"author": "Mikko Ohtamaa",
"author_email": "mikko@tradingstrategy.ai",
"download_url": "https://files.pythonhosted.org/packages/4d/02/bed9237ae5fb45591fa1833c011f4e4b2dd1a1a8d7fcfcfd010c7ec28273/trading-strategy-0.6.9.tar.gz",
"platform": null,
"description": "[](https://github.com/tradingstrategy-ai/trading-strategy/actions/workflows/python-app.yml)\n\n[](https://github.com/tradingstrategy-ai/trading-strategy/actions/workflows/pip-install.yml)\n\n[](https://tradingstrategy.ai)\n\n# Trading Strategy framework for Python\n\nTrading Strategy framework is a Python framework for algorithmic trading on decentralised exchanges. \nIt is using [backtesting data](https://tradingstrategy.ai/trading-view/backtesting) and [real-time price feeds](https://tradingstrategy.ai/trading-view)\nfrom [Trading Strategy Protocol](https://tradingstrategy.ai/). \n\n# Use cases\n\n* Analyse cryptocurrency investment opportunities on [decentralised exchanges (DEXes)](https://tradingstrategy.ai/trading-view/exchanges)\n\n* Creating trading algorithms and trading bots that trade on DEXes\n\n* Deploy trading strategies as on-chain smart contracts where users can invest and withdraw with their wallets\n\n# Features\n\n* Supports multiple blockchains like [Ethereum mainnet](https://tradingstrategy.ai/trading-view/ethereum), [Binance Smart Chain](https://tradingstrategy.ai/trading-view/binance) and [Polygon](https://tradingstrategy.ai/trading-view/polygon)\n\n* Access trading data from on-chain decentralised exchanges like [SushiSwap](https://tradingstrategy.ai/trading-view/ethereum/sushiswap), [QuickSwap](https://tradingstrategy.ai/trading-view/polygon/quickswap) and [PancakeSwap](https://tradingstrategy.ai/trading-view/binance/pancakeswap-v2)\n\n* Integration with [Jupyter Notebook](https://jupyter.org/) for easy manipulation of data \n\n* Utilise Python quantita frameworks like [Backtrader](https://github.com/tradingstrategy-ai/backtrader) and [QSTrader](https://github.com/tradingstrategy-ai/qstrader) to create, analyse and backtest DEX trading algorithms \n\n# Example and getting started \n\nSee [the Getting Started notebook](https://tradingstrategy.ai/docs/programming/examples/getting-started.html) and the rest of the [Trading Strategy documentation](https://tradingstrategy.ai/docs/).\n\n# Prerequisites\n\nPython 3.9+\n\n# Installing the package\n\n**Note**: Unless you are an experienced Python developer, [the suggested usage of Trading Algorithm framework is using Google Colab hosted environments](https://tradingstrategy.ai/docs/programming/examples/getting-started.html).\n\nYou can install this package with `poetry` or `pip`\n\n```shell\npoetry add trading-strategy\n```\n\n\n```shell\npip install trading-strategy \n```\n\nFor [QSTrader](https://pypi.org/project/trading-strategy-qstrader/) based trading algorithm support you need to install the related optional dependencies:\n\n```shell\npoetry add trading-strategy[qstrader]\n```\n\n# Documentation\n\n[Read documentation online](https://tradingstrategy.ai/docs/).\n\nCommunity\n---------\n\n* [Trading Strategy website](https://tradingstrategy.ai)\n\n* [Blog](https://tradingstrategy.ai/blog)\n\n* [Twitter](https://twitter.com/TradingProtocol)\n\n* [Discord](https://tradingstrategy.ai/community#discord) \n\n* [Telegram channel](https://t.me/trading_protocol)\n\n* [Changelog and version history](https://github.com/tradingstrategy-ai/trading-strategy/blob/master/CHANGELOG.md)\n\n[Read more documentation how to develop this package](https://tradingstrategy.ai/docs/programming/development.html).\n\n# License\n\nGNU AGPL 3.0. \n",
"bugtrack_url": null,
"license": "AGPL",
"summary": "Algorithmic trading and quantitative financial analysis framework for decentralised exchanges and blockchains",
"version": "0.6.9",
"split_keywords": [
"algorithmic trading",
"ethereum",
"cryptocurrency",
"uniswap",
"quantitative finance",
"binance",
"blockchain",
"pancakeswap",
"polygon",
"web3"
],
"urls": [
{
"comment_text": "",
"digests": {
"md5": "3bda67fcc6868e320624a9bfb290d88a",
"sha256": "d5d49b4e464ca4ff3a8d73d955dd68019056aed5dc69d6e0a07bcce09c6f2210"
},
"downloads": -1,
"filename": "trading_strategy-0.6.9-py3-none-any.whl",
"has_sig": false,
"md5_digest": "3bda67fcc6868e320624a9bfb290d88a",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9,<3.11",
"size": 276316,
"upload_time": "2022-05-14T19:54:50",
"upload_time_iso_8601": "2022-05-14T19:54:50.267406Z",
"url": "https://files.pythonhosted.org/packages/c1/ba/94a5ef01048256968c27cfc8b90f1a0b49659552523ea428475554895227/trading_strategy-0.6.9-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "6806a724ddd612b2f66f045b63d1e023",
"sha256": "7d8a65466fac33741156378546316c0b27eff29ede59e4aff5c20001e1f5ed4e"
},
"downloads": -1,
"filename": "trading-strategy-0.6.9.tar.gz",
"has_sig": false,
"md5_digest": "6806a724ddd612b2f66f045b63d1e023",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9,<3.11",
"size": 156595,
"upload_time": "2022-05-14T19:54:47",
"upload_time_iso_8601": "2022-05-14T19:54:47.256889Z",
"url": "https://files.pythonhosted.org/packages/4d/02/bed9237ae5fb45591fa1833c011f4e4b2dd1a1a8d7fcfcfd010c7ec28273/trading-strategy-0.6.9.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2022-05-14 19:54:47",
"github": false,
"gitlab": false,
"bitbucket": false,
"lcname": "trading-strategy"
}