Name | train-test-sim JSON |
Version |
0.1.1
JSON |
| download |
home_page | None |
Summary | Library to create simulation to find out what train test ratio is ideal |
upload_time | 2024-04-07 08:55:37 |
maintainer | None |
docs_url | None |
author | Marcel Tino |
requires_python | None |
license | None |
keywords |
train test
simulation
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
[English](README.md) | [Español](./docs/README.es.md) | [Français](./docs/README.fr.md) | [Deutsch](./docs/README.de.md) | [中文](./docs/README.zh.md) | [Türkçe](./docs/README.tr.md) | [日本語](./docs/README.ja.md) | [한국어](./docs/README.ko.md)
## train_test_sim
A library to create quick simulation of optimal train-test size you can keep
Developed by Marcel Tino (c) 2024
## Examples of How To Use the library
You can use this to alter according to your requirements
```
##syntax
from train_test_sim import get_simulation
model=RandomForestClassifier()
get_simulation(X,Y,model)
you can use any model on sklearn or xgboost. All you need to do is specify correct model name
```
```python
from train_test_sim import get_simulation
from sklearn.datasets import load_diabetes
import numpy as np
from sklearn.ensemble import RandomForestClassifier
diabetes = load_diabetes()
X, y = diabetes.data, diabetes.target
# Convert the target variable to binary (1 for diabetes, 0 for no diabetes)
Y = (y > np.median(y)).astype(int)
model = RandomForestClassifier()
get_simulation(X, Y, model)
```
Note: We can create this for any model
+ Share retail_dictionary on these social media platforms if you like it!
[![Reddit](https://img.shields.io/badge/share%20on-reddit-red?style=flat-square&logo=reddit)](https://reddit.com/submit?url=https://github.com/Kanaries/pygwalker&title=Say%20Hello%20to%20pygwalker%3A%20Combining%20Jupyter%20Notebook%20with%20a%20Tableau-like%20UI)
[![HackerNews](https://img.shields.io/badge/share%20on-hacker%20news-orange?style=flat-square&logo=ycombinator)](https://news.ycombinator.com/submitlink?u=https://github.com/Kanaries/pygwalker)
[![Twitter](https://img.shields.io/badge/share%20on-twitter-03A9F4?style=flat-square&logo=twitter)](https://twitter.com/share?url=https://github.com/Kanaries/pygwalker&text=Say%20Hello%20to%20pygwalker%3A%20Combining%20Jupyter%20Notebook%20with%20a%20Tableau-alternative%20UI)
[![Facebook](https://img.shields.io/badge/share%20on-facebook-1976D2?style=flat-square&logo=facebook)](https://www.facebook.com/sharer/sharer.php?u=https://github.com/Kanaries/pygwalker)
[![LinkedIn](https://img.shields.io/badge/share%20on-linkedin-3949AB?style=flat-square&logo=linkedin)](https://www.linkedin.com/shareArticle?url=https://github.com/Kanaries/pygwalker&&title=Say%20Hello%20to%20pygwalker%3A%20Combining%20Jupyter%20Notebook%20with%20a%20Tableau-alternative%20UI)
Raw data
{
"_id": null,
"home_page": null,
"name": "train-test-sim",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "train test, simulation",
"author": "Marcel Tino",
"author_email": "<marceltino92@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/4c/69/baeb4174faa8f2a68bcc814b2eca316e07d091cc65d3ecb799c4129c561b/train_test_sim-0.1.1.tar.gz",
"platform": null,
"description": "\r\n[English](README.md) | [Espa\u00f1ol](./docs/README.es.md) | [Fran\u00e7ais](./docs/README.fr.md) | [Deutsch](./docs/README.de.md) | [\u4e2d\u6587](./docs/README.zh.md) | [T\u00fcrk\u00e7e](./docs/README.tr.md) | [\u65e5\u672c\u8a9e](./docs/README.ja.md) | [\ud55c\uad6d\uc5b4](./docs/README.ko.md)\r\n\r\n## train_test_sim\r\n\r\nA library to create quick simulation of optimal train-test size you can keep\r\n\r\nDeveloped by Marcel Tino (c) 2024\r\n\r\n## Examples of How To Use the library \r\n\r\nYou can use this to alter according to your requirements\r\n\r\n\r\n```\r\n##syntax\r\nfrom train_test_sim import get_simulation\r\nmodel=RandomForestClassifier()\r\nget_simulation(X,Y,model)\r\n\r\nyou can use any model on sklearn or xgboost. All you need to do is specify correct model name\r\n```\r\n\r\n\r\n```python\r\nfrom train_test_sim import get_simulation\r\nfrom sklearn.datasets import load_diabetes\r\nimport numpy as np\r\nfrom sklearn.ensemble import RandomForestClassifier\r\ndiabetes = load_diabetes()\r\nX, y = diabetes.data, diabetes.target\r\n\r\n# Convert the target variable to binary (1 for diabetes, 0 for no diabetes)\r\nY = (y > np.median(y)).astype(int)\r\nmodel = RandomForestClassifier()\r\n\r\nget_simulation(X, Y, model)\r\n\r\n```\r\n\r\nNote: We can create this for any model\r\n\r\n\r\n+ Share retail_dictionary on these social media platforms if you like it!\r\n[![Reddit](https://img.shields.io/badge/share%20on-reddit-red?style=flat-square&logo=reddit)](https://reddit.com/submit?url=https://github.com/Kanaries/pygwalker&title=Say%20Hello%20to%20pygwalker%3A%20Combining%20Jupyter%20Notebook%20with%20a%20Tableau-like%20UI)\r\n[![HackerNews](https://img.shields.io/badge/share%20on-hacker%20news-orange?style=flat-square&logo=ycombinator)](https://news.ycombinator.com/submitlink?u=https://github.com/Kanaries/pygwalker)\r\n[![Twitter](https://img.shields.io/badge/share%20on-twitter-03A9F4?style=flat-square&logo=twitter)](https://twitter.com/share?url=https://github.com/Kanaries/pygwalker&text=Say%20Hello%20to%20pygwalker%3A%20Combining%20Jupyter%20Notebook%20with%20a%20Tableau-alternative%20UI)\r\n[![Facebook](https://img.shields.io/badge/share%20on-facebook-1976D2?style=flat-square&logo=facebook)](https://www.facebook.com/sharer/sharer.php?u=https://github.com/Kanaries/pygwalker)\r\n[![LinkedIn](https://img.shields.io/badge/share%20on-linkedin-3949AB?style=flat-square&logo=linkedin)](https://www.linkedin.com/shareArticle?url=https://github.com/Kanaries/pygwalker&&title=Say%20Hello%20to%20pygwalker%3A%20Combining%20Jupyter%20Notebook%20with%20a%20Tableau-alternative%20UI)\r\n",
"bugtrack_url": null,
"license": null,
"summary": "Library to create simulation to find out what train test ratio is ideal",
"version": "0.1.1",
"project_urls": null,
"split_keywords": [
"train test",
" simulation"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "08e20e071cdf0b442c7cf6f0e7cf6df48879b6293c82fb796a3728266190ba0b",
"md5": "8cc92afae10996e528d345803880a1e8",
"sha256": "49ebeefab7b8becd4e025bd5b0c182fb8805343904ab7001b37643eefeaaa4e6"
},
"downloads": -1,
"filename": "train_test_sim-0.1.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "8cc92afae10996e528d345803880a1e8",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 3216,
"upload_time": "2024-04-07T08:55:36",
"upload_time_iso_8601": "2024-04-07T08:55:36.536587Z",
"url": "https://files.pythonhosted.org/packages/08/e2/0e071cdf0b442c7cf6f0e7cf6df48879b6293c82fb796a3728266190ba0b/train_test_sim-0.1.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "4c69baeb4174faa8f2a68bcc814b2eca316e07d091cc65d3ecb799c4129c561b",
"md5": "e00d698bf6ea53d3fb7f64eaad0f73c5",
"sha256": "0acc616d1a46d326b1f9cc63c89cd31443a29d5fa0a86cc41084eb17a4d3cd10"
},
"downloads": -1,
"filename": "train_test_sim-0.1.1.tar.gz",
"has_sig": false,
"md5_digest": "e00d698bf6ea53d3fb7f64eaad0f73c5",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 3139,
"upload_time": "2024-04-07T08:55:37",
"upload_time_iso_8601": "2024-04-07T08:55:37.905194Z",
"url": "https://files.pythonhosted.org/packages/4c/69/baeb4174faa8f2a68bcc814b2eca316e07d091cc65d3ecb799c4129c561b/train_test_sim-0.1.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-04-07 08:55:37",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "train-test-sim"
}