Name | trainwave-cli JSON |
Version |
0.2.8
JSON |
| download |
home_page | None |
Summary | Trainwave CLI - A command-line interface for managing Trainwave resources |
upload_time | 2025-04-29 02:43:42 |
maintainer | Johan Backman |
docs_url | None |
author | Johan Backman |
requires_python | <4.0,>=3.10 |
license | MIT |
keywords |
cli
trainwave
ai
machine-learning
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# Trainwave CLI
A command-line interface for interacting with Trainwave's machine learning platform. This CLI tool provides functionality for managing training jobs, handling authentication, managing secrets, and configuring your Trainwave environment.
## Features
- Job Management: Create, monitor, and manage training jobs
- Authentication: Secure authentication with Trainwave's platform
- Secrets Management: Handle sensitive information for your jobs
- Configuration: Set up and manage your Trainwave environment
## Installation
### Using pip
```bash
pip install trainwave-cli
```
### From Source
1. Clone the repository
2. Install using Poetry:
```bash
poetry install
```
## Usage
The CLI provides several main commands:
```bash
wave jobs # Manage training jobs
wave auth # Authenticate with Trainwave
wave config # Configure your Trainwave environment
wave secrets # Manage job secrets
```
For detailed help on any command:
```bash
wave --help
wave <command> --help
```
## Development
This project uses Poetry for dependency management and packaging. Here's how to set up your development environment:
### Prerequisites
- Python 3.10 or higher
- Poetry
- Make (for development commands)
### Setting Up Development Environment
1. Clone the repository
2. Install development dependencies:
```bash
make install-dev
```
### Development Commands
The project includes several Make targets to help with development:
- `make install`: Install production dependencies
- `make install-dev`: Install development dependencies
- `make clean`: Remove temporary files and build artifacts
- `make ruff`: Run Ruff linter
- `make format`: Format code using Black and Ruff
- `make check`: Run all code quality checks
- `make test`: Run the test suite
- `make help`: Show available make commands
### Code Style
The project uses:
- Ruff for linting
- Black for code formatting
- Type hints are required for all functions
### Running Tests
```bash
make test
```
Or directly with pytest:
```bash
pytest tests/
```
## Project Structure
```
trainwave-cli/
├── trainwave_cli/ # Main package directory
├── tests/ # Test files
├── example/ # Example configurations and usage
├── pyproject.toml # Project metadata and dependencies
└── Makefile # Development automation
```
## Contributing
1. Fork the repository
2. Create a feature branch
3. Make your changes
4. Run tests and linting: `make check`
5. Submit a pull request
## License
[License information here]
Raw data
{
"_id": null,
"home_page": null,
"name": "trainwave-cli",
"maintainer": "Johan Backman",
"docs_url": null,
"requires_python": "<4.0,>=3.10",
"maintainer_email": "johan@trainwave.ai",
"keywords": "cli, trainwave, ai, machine-learning",
"author": "Johan Backman",
"author_email": "johan@trainwave.ai",
"download_url": "https://files.pythonhosted.org/packages/5b/37/4e1668218eb7548a8d36519d3ffb6a66ac1356f6a0429831e1b09ef658a5/trainwave_cli-0.2.8.tar.gz",
"platform": null,
"description": "# Trainwave CLI\n\nA command-line interface for interacting with Trainwave's machine learning platform. This CLI tool provides functionality for managing training jobs, handling authentication, managing secrets, and configuring your Trainwave environment.\n\n## Features\n\n- Job Management: Create, monitor, and manage training jobs\n- Authentication: Secure authentication with Trainwave's platform\n- Secrets Management: Handle sensitive information for your jobs\n- Configuration: Set up and manage your Trainwave environment\n\n## Installation\n\n### Using pip\n\n```bash\npip install trainwave-cli\n```\n\n### From Source\n\n1. Clone the repository\n2. Install using Poetry:\n\n```bash\npoetry install\n```\n\n## Usage\n\nThe CLI provides several main commands:\n\n```bash\nwave jobs # Manage training jobs\nwave auth # Authenticate with Trainwave\nwave config # Configure your Trainwave environment\nwave secrets # Manage job secrets\n```\n\nFor detailed help on any command:\n\n```bash\nwave --help\nwave <command> --help\n```\n\n## Development\n\nThis project uses Poetry for dependency management and packaging. Here's how to set up your development environment:\n\n### Prerequisites\n\n- Python 3.10 or higher\n- Poetry\n- Make (for development commands)\n\n### Setting Up Development Environment\n\n1. Clone the repository\n2. Install development dependencies:\n\n```bash\nmake install-dev\n```\n\n### Development Commands\n\nThe project includes several Make targets to help with development:\n\n- `make install`: Install production dependencies\n- `make install-dev`: Install development dependencies\n- `make clean`: Remove temporary files and build artifacts\n- `make ruff`: Run Ruff linter\n- `make format`: Format code using Black and Ruff\n- `make check`: Run all code quality checks\n- `make test`: Run the test suite\n- `make help`: Show available make commands\n\n### Code Style\n\nThe project uses:\n\n- Ruff for linting\n- Black for code formatting\n- Type hints are required for all functions\n\n### Running Tests\n\n```bash\nmake test\n```\n\nOr directly with pytest:\n\n```bash\npytest tests/\n```\n\n## Project Structure\n\n```\ntrainwave-cli/\n\u251c\u2500\u2500 trainwave_cli/ # Main package directory\n\u251c\u2500\u2500 tests/ # Test files\n\u251c\u2500\u2500 example/ # Example configurations and usage\n\u251c\u2500\u2500 pyproject.toml # Project metadata and dependencies\n\u2514\u2500\u2500 Makefile # Development automation\n```\n\n## Contributing\n\n1. Fork the repository\n2. Create a feature branch\n3. Make your changes\n4. Run tests and linting: `make check`\n5. Submit a pull request\n\n## License\n\n[License information here]\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Trainwave CLI - A command-line interface for managing Trainwave resources",
"version": "0.2.8",
"project_urls": {
"Documentation": "https://trainwave.ai/docs",
"Homepage": "https://trainwave.ai"
},
"split_keywords": [
"cli",
" trainwave",
" ai",
" machine-learning"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "24c7f005de1a30eb34efcbcf3d5afcd2988c39c761eefeca81348592cba8467d",
"md5": "352cd716f9c67811c6d7806b829f04ae",
"sha256": "c2bde3957a151ab17ae78281376299b219ffcf2b7bc03231a2af1f5878387167"
},
"downloads": -1,
"filename": "trainwave_cli-0.2.8-py3-none-any.whl",
"has_sig": false,
"md5_digest": "352cd716f9c67811c6d7806b829f04ae",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0,>=3.10",
"size": 19944,
"upload_time": "2025-04-29T02:43:41",
"upload_time_iso_8601": "2025-04-29T02:43:41.184893Z",
"url": "https://files.pythonhosted.org/packages/24/c7/f005de1a30eb34efcbcf3d5afcd2988c39c761eefeca81348592cba8467d/trainwave_cli-0.2.8-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "5b374e1668218eb7548a8d36519d3ffb6a66ac1356f6a0429831e1b09ef658a5",
"md5": "ae3f2230ef923845eac809d825de174d",
"sha256": "787b28896d09eb6e9741efde03750c37acc9a66db39b97513046330fd5d6f701"
},
"downloads": -1,
"filename": "trainwave_cli-0.2.8.tar.gz",
"has_sig": false,
"md5_digest": "ae3f2230ef923845eac809d825de174d",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0,>=3.10",
"size": 16048,
"upload_time": "2025-04-29T02:43:42",
"upload_time_iso_8601": "2025-04-29T02:43:42.472039Z",
"url": "https://files.pythonhosted.org/packages/5b/37/4e1668218eb7548a8d36519d3ffb6a66ac1356f6a0429831e1b09ef658a5/trainwave_cli-0.2.8.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-04-29 02:43:42",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "trainwave-cli"
}