trajectree-quimb


Nametrajectree-quimb JSON
Version 0.0.2 PyPI version JSON
download
home_pageNone
SummaryModified version of the Quimb library to work with the Trajectree Quantum optics simulator.
upload_time2025-08-26 15:31:49
maintainerNone
docs_urlNone
authorNone
requires_python>=3.9
licenseApache-2.0
keywords dmrg mera networks peps physics quantum tebd tensor tensors
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            ![quimb logo](https://github.com/jcmgray/quimb/blob/HEAD/docs/_static/logo-banner.png?raw=true)

[![Tests](https://github.com/jcmgray/quimb/actions/workflows/tests.yml/badge.svg)](https://github.com/jcmgray/quimb/actions/workflows/tests.yml)
[![Code Coverage](https://codecov.io/gh/jcmgray/quimb/branch/main/graph/badge.svg)](https://codecov.io/gh/jcmgray/quimb)
[![Code Quality](https://app.codacy.com/project/badge/Grade/3c7462a3c45f41fd9d8f0a746a65c37c)](https://www.codacy.com/gh/jcmgray/quimb/dashboard?utm_source=github.com&utm_medium=referral&utm_content=jcmgray/quimb&utm_campaign=Badge_Grade)
[![Documentation Status](https://readthedocs.org/projects/quimb/badge/?version=latest)](http://quimb.readthedocs.io/en/latest/?badge=latest)
[![JOSS Paper](http://joss.theoj.org/papers/10.21105/joss.00819/status.svg)](https://doi.org/10.21105/joss.00819)
[![PyPI](https://img.shields.io/pypi/v/quimb?color=teal)](https://pypi.org/project/quimb/)
[![Anaconda-Server Badge](https://anaconda.org/conda-forge/quimb/badges/version.svg)](https://anaconda.org/conda-forge/quimb)

[`quimb`](https://github.com/jcmgray/quimb) is an easy but fast python library for *'quantum information many-body'* calculations, focusing primarily on **tensor networks**. The code is hosted on [github](https://github.com/jcmgray/quimb), and docs are hosted on [readthedocs](http://quimb.readthedocs.io/en/latest/). Functionality is split in two:

---

The `quimb.tensor` module contains tools for working with **tensors and tensor networks**. It has a particular focus on automatically handling arbitrary geometry, e.g. beyond 1D and 2D lattices. With this you can:

- construct and manipulate arbitrary (hyper) graphs of tensor networks
- automatically [contract](https://cotengra.readthedocs.io), optimize and draw networks
- use various backend array libraries such as [jax](https://jax.readthedocs.io) and [torch](https://pytorch.org/) via [autoray](https://github.com/jcmgray/autoray/)
- run specific MPS, PEPS, MERA and quantum circuit algorithms, such as DMRG & TEBD

![tensor pic](https://github.com/jcmgray/quimb/blob/HEAD/docs/_static/rand-tensor.svg?raw=true)

---

The core `quimb` module contains tools for reference **'exact'** quantum calculations, where the states and operator are represented as either `numpy.ndarray` or `scipy.sparse` **matrices**. With this you can:

- construct operators in complicated tensor spaces
- find groundstates, excited states and do time evolutions, including with [slepc](https://slepc.upv.es/)
- compute various quantities including entanglement measures
- take advantage of [numba](https://numba.pydata.org) accelerations
- stochastically estimate $\mathrm{Tr}f(X)$ quantities

![matrix pic](https://github.com/jcmgray/quimb/blob/HEAD/docs/_static/rand-herm-matrix.svg?raw=true)

---

The **full documentation** can be found at: [quimb.readthedocs.io](https://quimb.readthedocs.io). Contributions of any sort are very welcome - please see the [contributing guide](https://github.com/jcmgray/quimb/blob/main/.github/CONTRIBUTING.md). [Issues](https://github.com/jcmgray/quimb/issues) and [pull requests](https://github.com/jcmgray/quimb/pulls) are hosted on [github](https://github.com/jcmgray/quimb). For other questions and suggestions, please use the [discussions page](https://github.com/jcmgray/quimb/discussions).
            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "trajectree-quimb",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "dmrg, mera, networks, peps, physics, quantum, tebd, tensor, tensors",
    "author": null,
    "author_email": "Ansh Singal <asingal@u.northwestern.edu>",
    "download_url": "https://files.pythonhosted.org/packages/05/f3/70cf715ff15cd8a684e2a317f85b69eb10a9abf07ac6cfac700274b33ecd/trajectree_quimb-0.0.2.tar.gz",
    "platform": null,
    "description": "![quimb logo](https://github.com/jcmgray/quimb/blob/HEAD/docs/_static/logo-banner.png?raw=true)\n\n[![Tests](https://github.com/jcmgray/quimb/actions/workflows/tests.yml/badge.svg)](https://github.com/jcmgray/quimb/actions/workflows/tests.yml)\n[![Code Coverage](https://codecov.io/gh/jcmgray/quimb/branch/main/graph/badge.svg)](https://codecov.io/gh/jcmgray/quimb)\n[![Code Quality](https://app.codacy.com/project/badge/Grade/3c7462a3c45f41fd9d8f0a746a65c37c)](https://www.codacy.com/gh/jcmgray/quimb/dashboard?utm_source=github.com&amp;utm_medium=referral&amp;utm_content=jcmgray/quimb&amp;utm_campaign=Badge_Grade)\n[![Documentation Status](https://readthedocs.org/projects/quimb/badge/?version=latest)](http://quimb.readthedocs.io/en/latest/?badge=latest)\n[![JOSS Paper](http://joss.theoj.org/papers/10.21105/joss.00819/status.svg)](https://doi.org/10.21105/joss.00819)\n[![PyPI](https://img.shields.io/pypi/v/quimb?color=teal)](https://pypi.org/project/quimb/)\n[![Anaconda-Server Badge](https://anaconda.org/conda-forge/quimb/badges/version.svg)](https://anaconda.org/conda-forge/quimb)\n\n[`quimb`](https://github.com/jcmgray/quimb) is an easy but fast python library for *'quantum information many-body'* calculations, focusing primarily on **tensor networks**. The code is hosted on [github](https://github.com/jcmgray/quimb), and docs are hosted on [readthedocs](http://quimb.readthedocs.io/en/latest/). Functionality is split in two:\n\n---\n\nThe `quimb.tensor` module contains tools for working with **tensors and tensor networks**. It has a particular focus on automatically handling arbitrary geometry, e.g. beyond 1D and 2D lattices. With this you can:\n\n- construct and manipulate arbitrary (hyper) graphs of tensor networks\n- automatically [contract](https://cotengra.readthedocs.io), optimize and draw networks\n- use various backend array libraries such as [jax](https://jax.readthedocs.io) and [torch](https://pytorch.org/) via [autoray](https://github.com/jcmgray/autoray/)\n- run specific MPS, PEPS, MERA and quantum circuit algorithms, such as DMRG & TEBD\n\n![tensor pic](https://github.com/jcmgray/quimb/blob/HEAD/docs/_static/rand-tensor.svg?raw=true)\n\n---\n\nThe core `quimb` module contains tools for reference **'exact'** quantum calculations, where the states and operator are represented as either `numpy.ndarray` or `scipy.sparse` **matrices**. With this you can:\n\n- construct operators in complicated tensor spaces\n- find groundstates, excited states and do time evolutions, including with [slepc](https://slepc.upv.es/)\n- compute various quantities including entanglement measures\n- take advantage of [numba](https://numba.pydata.org) accelerations\n- stochastically estimate $\\mathrm{Tr}f(X)$ quantities\n\n![matrix pic](https://github.com/jcmgray/quimb/blob/HEAD/docs/_static/rand-herm-matrix.svg?raw=true)\n\n---\n\nThe **full documentation** can be found at: [quimb.readthedocs.io](https://quimb.readthedocs.io). Contributions of any sort are very welcome - please see the [contributing guide](https://github.com/jcmgray/quimb/blob/main/.github/CONTRIBUTING.md). [Issues](https://github.com/jcmgray/quimb/issues) and [pull requests](https://github.com/jcmgray/quimb/pulls) are hosted on [github](https://github.com/jcmgray/quimb). For other questions and suggestions, please use the [discussions page](https://github.com/jcmgray/quimb/discussions).",
    "bugtrack_url": null,
    "license": "Apache-2.0",
    "summary": "Modified version of the Quimb library to work with the Trajectree Quantum optics simulator.",
    "version": "0.0.2",
    "project_urls": {
        "Repository": "https://github.com/anshsingal/trajectree-quimb"
    },
    "split_keywords": [
        "dmrg",
        " mera",
        " networks",
        " peps",
        " physics",
        " quantum",
        " tebd",
        " tensor",
        " tensors"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "3087587215126a1a870a56ef35485cd177335d5911295d0861bd464d160267d8",
                "md5": "8dc625852f854fef3d4a0ad9d53f9df1",
                "sha256": "3343e494e0fa13d26771fe78eecd29ea793d59fc888a121f594ea9384237c173"
            },
            "downloads": -1,
            "filename": "trajectree_quimb-0.0.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "8dc625852f854fef3d4a0ad9d53f9df1",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 1740095,
            "upload_time": "2025-08-26T15:31:46",
            "upload_time_iso_8601": "2025-08-26T15:31:46.839217Z",
            "url": "https://files.pythonhosted.org/packages/30/87/587215126a1a870a56ef35485cd177335d5911295d0861bd464d160267d8/trajectree_quimb-0.0.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "05f370cf715ff15cd8a684e2a317f85b69eb10a9abf07ac6cfac700274b33ecd",
                "md5": "44129accc29aa6b0888ee49311e3bb7f",
                "sha256": "f6a249b5cfb1092754f68f2f184cf944a6e4706e59b00f4f56b34fc55047b44c"
            },
            "downloads": -1,
            "filename": "trajectree_quimb-0.0.2.tar.gz",
            "has_sig": false,
            "md5_digest": "44129accc29aa6b0888ee49311e3bb7f",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 1697128,
            "upload_time": "2025-08-26T15:31:49",
            "upload_time_iso_8601": "2025-08-26T15:31:49.740416Z",
            "url": "https://files.pythonhosted.org/packages/05/f3/70cf715ff15cd8a684e2a317f85b69eb10a9abf07ac6cfac700274b33ecd/trajectree_quimb-0.0.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-26 15:31:49",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "anshsingal",
    "github_project": "trajectree-quimb",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "trajectree-quimb"
}
        
Elapsed time: 1.34309s