================
Trame MNIST
================
Example application using **trame** for exploring MNIST dataset in the context of AI training and XAI thanks to **XAITK**.
* Free software: BSD License
* `XAITK Saliency with MNIST <https://github.com/XAITK/xaitk-saliency/blob/master/examples/MNIST_scikit_saliency.ipynb>`_
* `XAI Discovery Platform | MNIST Sample Data <http://obereed.net:3838/mnist/>`_
Installing
----------
For the Python layer it is recommended to use `conda <https://docs.conda.io/en/latest/miniconda.html>`_ to properly install the various ML packages.
conda setup on macOS
^^^^^^^^^^^^^^^^^^^^^
Go to `conda documentation <https://docs.conda.io/en/latest/miniconda.html>`_ for your OS
.. code-block:: console
brew install miniforge
conda init zsh
venv setup for AI
^^^^^^^^^^^^^^^^^^
.. code-block:: console
# Needed in order to get py3.9 with lzma
# PYTHON_CONFIGURE_OPTS="--enable-framework" pyenv install 3.9.9
conda create --name trame-mnist python=3.9
conda activate trame-mnist
# For development when inside repo
pip install -e .
# For testing (no need to clone repo)
pip install trame-mnist
Running the application
------------------------
.. code-block:: console
conda activate trame-mnist
trame-mnist
If **cuda** is available, the application will use your GPU, but you can also force the usage of your cpu by adding to your command line the following argument: **--cpu**
|image_1| |image_2| |image_3|
.. |image_1| image:: https://github.com/Kitware/trame-mnist/raw/master/gallery/trame-mnist-02.jpg
:width: 32%
.. |image_2| image:: https://github.com/Kitware/trame-mnist/raw/master/gallery/trame-mnist-03.jpg
:width: 32%
.. |image_3| image:: https://github.com/Kitware/trame-mnist/raw/master/gallery/trame-mnist-04.jpg
:width: 32%
License
--------
**trame-mnist** is distributed under the OSI-approved BSD 3-clause License.
Raw data
{
"_id": null,
"home_page": "",
"name": "trame-mnist",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "Python,Interactive,Web,Application,Framework",
"author": "Kitware Inc.",
"author_email": "",
"download_url": "https://files.pythonhosted.org/packages/ea/ec/bfc600c3622d1b8560e42297c64a38ec2681cc5db988696eb9c9add5dec1/trame-mnist-2.1.0.tar.gz",
"platform": null,
"description": "================\nTrame MNIST\n================\n\nExample application using **trame** for exploring MNIST dataset in the context of AI training and XAI thanks to **XAITK**.\n\n* Free software: BSD License\n* `XAITK Saliency with MNIST <https://github.com/XAITK/xaitk-saliency/blob/master/examples/MNIST_scikit_saliency.ipynb>`_\n* `XAI Discovery Platform | MNIST Sample Data <http://obereed.net:3838/mnist/>`_\n\nInstalling\n----------\n\nFor the Python layer it is recommended to use `conda <https://docs.conda.io/en/latest/miniconda.html>`_ to properly install the various ML packages.\n\nconda setup on macOS\n^^^^^^^^^^^^^^^^^^^^^\n\nGo to `conda documentation <https://docs.conda.io/en/latest/miniconda.html>`_ for your OS\n\n.. code-block:: console\n\n brew install miniforge\n conda init zsh\n\nvenv setup for AI\n^^^^^^^^^^^^^^^^^^\n\n.. code-block:: console\n\n # Needed in order to get py3.9 with lzma\n # PYTHON_CONFIGURE_OPTS=\"--enable-framework\" pyenv install 3.9.9\n\n conda create --name trame-mnist python=3.9\n conda activate trame-mnist\n\n # For development when inside repo\n pip install -e .\n\n # For testing (no need to clone repo)\n pip install trame-mnist\n\n\n\nRunning the application\n------------------------\n\n.. code-block:: console\n\n conda activate trame-mnist\n trame-mnist\n\nIf **cuda** is available, the application will use your GPU, but you can also force the usage of your cpu by adding to your command line the following argument: **--cpu**\n\n|image_1| |image_2| |image_3|\n\n.. |image_1| image:: https://github.com/Kitware/trame-mnist/raw/master/gallery/trame-mnist-02.jpg\n :width: 32%\n.. |image_2| image:: https://github.com/Kitware/trame-mnist/raw/master/gallery/trame-mnist-03.jpg\n :width: 32%\n.. |image_3| image:: https://github.com/Kitware/trame-mnist/raw/master/gallery/trame-mnist-04.jpg\n :width: 32%\n\nLicense\n--------\n\n**trame-mnist** is distributed under the OSI-approved BSD 3-clause License.\n\n\n",
"bugtrack_url": null,
"license": "BSD License",
"summary": "Visualization exploration for AI/XAI",
"version": "2.1.0",
"project_urls": null,
"split_keywords": [
"python",
"interactive",
"web",
"application",
"framework"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "4b1434dc9d11ce271a41ac2dd4164240e6978b9a33f4e91429602a91375f64f7",
"md5": "1bf99cf5746b01a40d15c20f1add83a4",
"sha256": "a4c072b450797b31e90030df66e233f2832f3bc184183dc8baa343f06f40f693"
},
"downloads": -1,
"filename": "trame_mnist-2.1.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "1bf99cf5746b01a40d15c20f1add83a4",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 17392,
"upload_time": "2023-07-12T23:07:41",
"upload_time_iso_8601": "2023-07-12T23:07:41.470275Z",
"url": "https://files.pythonhosted.org/packages/4b/14/34dc9d11ce271a41ac2dd4164240e6978b9a33f4e91429602a91375f64f7/trame_mnist-2.1.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "eaecbfc600c3622d1b8560e42297c64a38ec2681cc5db988696eb9c9add5dec1",
"md5": "d5b21a449e0419231a86c645f4534cd8",
"sha256": "54db80be6381ab8b78870901d69532252843f11aadd68d586482046e957d7557"
},
"downloads": -1,
"filename": "trame-mnist-2.1.0.tar.gz",
"has_sig": false,
"md5_digest": "d5b21a449e0419231a86c645f4534cd8",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 15032,
"upload_time": "2023-07-12T23:07:43",
"upload_time_iso_8601": "2023-07-12T23:07:43.377313Z",
"url": "https://files.pythonhosted.org/packages/ea/ec/bfc600c3622d1b8560e42297c64a38ec2681cc5db988696eb9c9add5dec1/trame-mnist-2.1.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-07-12 23:07:43",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "trame-mnist"
}