trame-mnist


Nametrame-mnist JSON
Version 2.1.0 PyPI version JSON
download
home_page
SummaryVisualization exploration for AI/XAI
upload_time2023-07-12 23:07:43
maintainer
docs_urlNone
authorKitware Inc.
requires_python
licenseBSD License
keywords python interactive web application framework
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            ================
Trame MNIST
================

Example application using **trame** for exploring MNIST dataset in the context of AI training and XAI thanks to **XAITK**.

* Free software: BSD License
* `XAITK Saliency with MNIST <https://github.com/XAITK/xaitk-saliency/blob/master/examples/MNIST_scikit_saliency.ipynb>`_
* `XAI Discovery Platform | MNIST Sample Data <http://obereed.net:3838/mnist/>`_

Installing
----------

For the Python layer it is recommended to use `conda <https://docs.conda.io/en/latest/miniconda.html>`_ to properly install the various ML packages.

conda setup on macOS
^^^^^^^^^^^^^^^^^^^^^

Go to `conda documentation <https://docs.conda.io/en/latest/miniconda.html>`_ for your OS

.. code-block:: console

    brew install miniforge
    conda init zsh

venv setup for AI
^^^^^^^^^^^^^^^^^^

.. code-block:: console

    # Needed in order to get py3.9 with lzma
    # PYTHON_CONFIGURE_OPTS="--enable-framework" pyenv install 3.9.9

    conda create --name trame-mnist python=3.9
    conda activate trame-mnist

    # For development when inside repo
    pip install -e .

    # For testing (no need to clone repo)
    pip install trame-mnist



Running the application
------------------------

.. code-block:: console

    conda activate trame-mnist
    trame-mnist

If **cuda** is available, the application will use your GPU, but you can also force the usage of your cpu by adding to your command line the following argument: **--cpu**

|image_1| |image_2| |image_3|

.. |image_1| image:: https://github.com/Kitware/trame-mnist/raw/master/gallery/trame-mnist-02.jpg
  :width: 32%
.. |image_2| image:: https://github.com/Kitware/trame-mnist/raw/master/gallery/trame-mnist-03.jpg
  :width: 32%
.. |image_3| image:: https://github.com/Kitware/trame-mnist/raw/master/gallery/trame-mnist-04.jpg
  :width: 32%

License
--------

**trame-mnist** is distributed under the OSI-approved BSD 3-clause License.



            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "trame-mnist",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "Python,Interactive,Web,Application,Framework",
    "author": "Kitware Inc.",
    "author_email": "",
    "download_url": "https://files.pythonhosted.org/packages/ea/ec/bfc600c3622d1b8560e42297c64a38ec2681cc5db988696eb9c9add5dec1/trame-mnist-2.1.0.tar.gz",
    "platform": null,
    "description": "================\nTrame MNIST\n================\n\nExample application using **trame** for exploring MNIST dataset in the context of AI training and XAI thanks to **XAITK**.\n\n* Free software: BSD License\n* `XAITK Saliency with MNIST <https://github.com/XAITK/xaitk-saliency/blob/master/examples/MNIST_scikit_saliency.ipynb>`_\n* `XAI Discovery Platform | MNIST Sample Data <http://obereed.net:3838/mnist/>`_\n\nInstalling\n----------\n\nFor the Python layer it is recommended to use `conda <https://docs.conda.io/en/latest/miniconda.html>`_ to properly install the various ML packages.\n\nconda setup on macOS\n^^^^^^^^^^^^^^^^^^^^^\n\nGo to `conda documentation <https://docs.conda.io/en/latest/miniconda.html>`_ for your OS\n\n.. code-block:: console\n\n    brew install miniforge\n    conda init zsh\n\nvenv setup for AI\n^^^^^^^^^^^^^^^^^^\n\n.. code-block:: console\n\n    # Needed in order to get py3.9 with lzma\n    # PYTHON_CONFIGURE_OPTS=\"--enable-framework\" pyenv install 3.9.9\n\n    conda create --name trame-mnist python=3.9\n    conda activate trame-mnist\n\n    # For development when inside repo\n    pip install -e .\n\n    # For testing (no need to clone repo)\n    pip install trame-mnist\n\n\n\nRunning the application\n------------------------\n\n.. code-block:: console\n\n    conda activate trame-mnist\n    trame-mnist\n\nIf **cuda** is available, the application will use your GPU, but you can also force the usage of your cpu by adding to your command line the following argument: **--cpu**\n\n|image_1| |image_2| |image_3|\n\n.. |image_1| image:: https://github.com/Kitware/trame-mnist/raw/master/gallery/trame-mnist-02.jpg\n  :width: 32%\n.. |image_2| image:: https://github.com/Kitware/trame-mnist/raw/master/gallery/trame-mnist-03.jpg\n  :width: 32%\n.. |image_3| image:: https://github.com/Kitware/trame-mnist/raw/master/gallery/trame-mnist-04.jpg\n  :width: 32%\n\nLicense\n--------\n\n**trame-mnist** is distributed under the OSI-approved BSD 3-clause License.\n\n\n",
    "bugtrack_url": null,
    "license": "BSD License",
    "summary": "Visualization exploration for AI/XAI",
    "version": "2.1.0",
    "project_urls": null,
    "split_keywords": [
        "python",
        "interactive",
        "web",
        "application",
        "framework"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "4b1434dc9d11ce271a41ac2dd4164240e6978b9a33f4e91429602a91375f64f7",
                "md5": "1bf99cf5746b01a40d15c20f1add83a4",
                "sha256": "a4c072b450797b31e90030df66e233f2832f3bc184183dc8baa343f06f40f693"
            },
            "downloads": -1,
            "filename": "trame_mnist-2.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "1bf99cf5746b01a40d15c20f1add83a4",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 17392,
            "upload_time": "2023-07-12T23:07:41",
            "upload_time_iso_8601": "2023-07-12T23:07:41.470275Z",
            "url": "https://files.pythonhosted.org/packages/4b/14/34dc9d11ce271a41ac2dd4164240e6978b9a33f4e91429602a91375f64f7/trame_mnist-2.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "eaecbfc600c3622d1b8560e42297c64a38ec2681cc5db988696eb9c9add5dec1",
                "md5": "d5b21a449e0419231a86c645f4534cd8",
                "sha256": "54db80be6381ab8b78870901d69532252843f11aadd68d586482046e957d7557"
            },
            "downloads": -1,
            "filename": "trame-mnist-2.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "d5b21a449e0419231a86c645f4534cd8",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 15032,
            "upload_time": "2023-07-12T23:07:43",
            "upload_time_iso_8601": "2023-07-12T23:07:43.377313Z",
            "url": "https://files.pythonhosted.org/packages/ea/ec/bfc600c3622d1b8560e42297c64a38ec2681cc5db988696eb9c9add5dec1/trame-mnist-2.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-07-12 23:07:43",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "trame-mnist"
}
        
Elapsed time: 0.42500s