transformd


Nametransformd JSON
Version 0.3.0 PyPI version JSON
download
home_page
SummaryTransform dictionaries into whatever your heart desires (as long as it's another dictionary that kind of looks like the original dictionary)
upload_time2023-12-04 03:52:51
maintainer
docs_urlNone
authorAdam Hill
requires_python>=3.8
license
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # transformd

Transform a `dictionary` to another `dictionary`, but keep the same shape based on a `spec`.

## What is a spec?

It is a string (or sequence of strings) that specifies which "parts" of the dictionary should be included or excluded in a new `dictionary` that is returned from the `transform` function.

A `spec` uses dot-notation to specify how to traverse into the `dictionary`. It can also use indexes if the value of the `dictionary` is a list.

Note: `Specs` are applied to the original `dictionary` in the order they are defined -- the `dictionary` gets updated after each spec.

## Examples

```python
from transformd import Transformer

# Initial `dictionary` we'll transform based on a spec below
data = {
    "library": {
        "name": "Main St Library",
        "location": {
            "street": "123 Main St",
            "city": "New York City",
            "state": "NY",
        },
        "books": [
            {
                "title": "The Grapes of Wrath",
                "author": {"first_name": "John", "last_name": "Steinbeck"},
            },
            {
                "title": "Slaughterhouse-Five",
                "author": {"first_name": "Kurt", "last_name": "Vonnegut"},
            },
        ],
    }
}

# Only return a nested part of `data`
assert Transformer(data).transform(spec="library.name") == {
    "library": {
        "name": "Main St Library"
    }
}

# Return multiple parts of `data`
assert Transformer(data).transform(spec=("library.name", "library.location.state")) == {
    "library": {
        "name": "Main St Library",
        "location": {
            "state": "NY"
        },
    }
}

# Return different parts of a nested list in `data`
assert Transformer(data).transform(spec=("library.books.0.title", "library.books.1")) == {
    "library": {
        "books": [
            {
                "title": "The Grapes of Wrath",
            },
            {
                "title": "Slaughterhouse-Five",
                "author": {"first_name": "Kurt", "last_name": "Vonnegut"},
            },
        ],
    }
}

# Exclude pieces from `data` by prefixing a spec with a dash
assert Transformer(data).transform(spec=("-library.books", "-library.location")) == {
    "library": {
        "name": "Main St Library"
    }
}
```

## Why?

I needed this functionality for [`Unicorn`](https://www.django-unicorn.com), but could not find a suitable library. After writing the code, I thought maybe it would be useful for someone else. 🤷

## Run tests

- Install [rye](https://rye-up.com)
- `rye sync`
- `rye run t`

### Test Coverage

- `rye run tc`

## Inspiration

- Django Templates for the dot-notation inspiration
- A lot of existing JSON-related tools, but especially [`glom`](https://glom.readthedocs.io/), [`jello`](https://github.com/kellyjonbrazil/jello), [`jq`](https://jqlang.github.io/jq/), and [`gron`](https://github.com/TomNomNom/gron); all of which did not quite do what I wanted, but were useful on the journey

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "transformd",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "",
    "keywords": "",
    "author": "Adam Hill",
    "author_email": "",
    "download_url": "https://files.pythonhosted.org/packages/55/80/ecaddd98fadcbf6e761abc4d291bf99f5559f087cad0d1f234a6176cc4fd/transformd-0.3.0.tar.gz",
    "platform": null,
    "description": "# transformd\n\nTransform a `dictionary` to another `dictionary`, but keep the same shape based on a `spec`.\n\n## What is a spec?\n\nIt is a string (or sequence of strings) that specifies which \"parts\" of the dictionary should be included or excluded in a new `dictionary` that is returned from the `transform` function.\n\nA `spec` uses dot-notation to specify how to traverse into the `dictionary`. It can also use indexes if the value of the `dictionary` is a list.\n\nNote: `Specs` are applied to the original `dictionary` in the order they are defined -- the `dictionary` gets updated after each spec.\n\n## Examples\n\n```python\nfrom transformd import Transformer\n\n# Initial `dictionary` we'll transform based on a spec below\ndata = {\n    \"library\": {\n        \"name\": \"Main St Library\",\n        \"location\": {\n            \"street\": \"123 Main St\",\n            \"city\": \"New York City\",\n            \"state\": \"NY\",\n        },\n        \"books\": [\n            {\n                \"title\": \"The Grapes of Wrath\",\n                \"author\": {\"first_name\": \"John\", \"last_name\": \"Steinbeck\"},\n            },\n            {\n                \"title\": \"Slaughterhouse-Five\",\n                \"author\": {\"first_name\": \"Kurt\", \"last_name\": \"Vonnegut\"},\n            },\n        ],\n    }\n}\n\n# Only return a nested part of `data`\nassert Transformer(data).transform(spec=\"library.name\") == {\n    \"library\": {\n        \"name\": \"Main St Library\"\n    }\n}\n\n# Return multiple parts of `data`\nassert Transformer(data).transform(spec=(\"library.name\", \"library.location.state\")) == {\n    \"library\": {\n        \"name\": \"Main St Library\",\n        \"location\": {\n            \"state\": \"NY\"\n        },\n    }\n}\n\n# Return different parts of a nested list in `data`\nassert Transformer(data).transform(spec=(\"library.books.0.title\", \"library.books.1\")) == {\n    \"library\": {\n        \"books\": [\n            {\n                \"title\": \"The Grapes of Wrath\",\n            },\n            {\n                \"title\": \"Slaughterhouse-Five\",\n                \"author\": {\"first_name\": \"Kurt\", \"last_name\": \"Vonnegut\"},\n            },\n        ],\n    }\n}\n\n# Exclude pieces from `data` by prefixing a spec with a dash\nassert Transformer(data).transform(spec=(\"-library.books\", \"-library.location\")) == {\n    \"library\": {\n        \"name\": \"Main St Library\"\n    }\n}\n```\n\n## Why?\n\nI needed this functionality for [`Unicorn`](https://www.django-unicorn.com), but could not find a suitable library. After writing the code, I thought maybe it would be useful for someone else. \ud83e\udd37\n\n## Run tests\n\n- Install [rye](https://rye-up.com)\n- `rye sync`\n- `rye run t`\n\n### Test Coverage\n\n- `rye run tc`\n\n## Inspiration\n\n- Django Templates for the dot-notation inspiration\n- A lot of existing JSON-related tools, but especially [`glom`](https://glom.readthedocs.io/), [`jello`](https://github.com/kellyjonbrazil/jello), [`jq`](https://jqlang.github.io/jq/), and [`gron`](https://github.com/TomNomNom/gron); all of which did not quite do what I wanted, but were useful on the journey\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "Transform dictionaries into whatever your heart desires (as long as it's another dictionary that kind of looks like the original dictionary)",
    "version": "0.3.0",
    "project_urls": {
        "Homepage": "https://github.com/adamghill/transformd"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c7a4375ce3ff7979d91d10b0e6bf67ba50e694b1172e3c3272c1ae0a31924a6b",
                "md5": "76e27ad4520fac29d5e450195f57b94c",
                "sha256": "7ca14b3dc2a5d37e6b8a5a0434ce56eecaa7bc25def2c203bbd0bc85a6a68944"
            },
            "downloads": -1,
            "filename": "transformd-0.3.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "76e27ad4520fac29d5e450195f57b94c",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 6254,
            "upload_time": "2023-12-04T03:52:50",
            "upload_time_iso_8601": "2023-12-04T03:52:50.149515Z",
            "url": "https://files.pythonhosted.org/packages/c7/a4/375ce3ff7979d91d10b0e6bf67ba50e694b1172e3c3272c1ae0a31924a6b/transformd-0.3.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "5580ecaddd98fadcbf6e761abc4d291bf99f5559f087cad0d1f234a6176cc4fd",
                "md5": "6680fb6de71e10e1e6c888045d49e34f",
                "sha256": "8be4f5d7a1dfdf8d80ee4adf2d415ad8e6b298f22389147fa778ccb52593836a"
            },
            "downloads": -1,
            "filename": "transformd-0.3.0.tar.gz",
            "has_sig": false,
            "md5_digest": "6680fb6de71e10e1e6c888045d49e34f",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 6510,
            "upload_time": "2023-12-04T03:52:51",
            "upload_time_iso_8601": "2023-12-04T03:52:51.626607Z",
            "url": "https://files.pythonhosted.org/packages/55/80/ecaddd98fadcbf6e761abc4d291bf99f5559f087cad0d1f234a6176cc4fd/transformd-0.3.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-12-04 03:52:51",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "adamghill",
    "github_project": "transformd",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "transformd"
}
        
Elapsed time: 0.16214s