# Tri-Breed Image Dataset Generator
This project aims to create a Python package for generating diverse and enriched image datasets from a small original dataset using three augmentation families:
1. **Traditional Augmentation**: Flips, rotations, scaling, cropping, color jitter, etc., implemented via Albumentations.
2. **Neural Style Transfer (NST)**: Applies artistic/domain-specific textures from style images, implemented with PyTorch + pre-trained fast NST models.
3. **Patch Mixing**: Combines regions from different images (CutMix, MixUp) to boost structural diversity.
## Goals
- Produce lightweight, diverse datasets for small-data training scenarios.
- Allow custom combinations of techniques per batch.
## Features
- **Gradio-based UI**: For interactive usage, allowing users to upload base datasets and optional style images, choose augmentation pipelines and parameters, and preview generated samples in real-time.
- **Python API & CLI**: For batch automation.
- **Export**: To standard dataset formats (COCO, ImageFolder, etc.).
- **Diversity Scoring**: (LPIPS, FID) with visual reports.
## Gradio Workflow Example
1. User uploads original images.
2. Selects techniques (checklist) and parameters (sliders for rotation, blend ratio, style strength).
3. Previews augmented images instantly.
4. Clicks "Generate & Download" to export the batch.
Raw data
{
"_id": null,
"home_page": "https://github.com/yourusername/tri_breed_image_generator",
"name": "tri-breed-image-generator",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "image augmentation, dataset generation, neural style transfer, cutmix, mixup, computer vision, deep learning",
"author": "Your Name",
"author_email": "your.email@example.com",
"download_url": "https://files.pythonhosted.org/packages/76/51/f9c3d3282752f0f57ea1cf16714181eb37e9f55579997b4ed3809716d24d/tri_breed_image_generator-0.1.tar.gz",
"platform": null,
"description": "# Tri-Breed Image Dataset Generator\r\n\r\nThis project aims to create a Python package for generating diverse and enriched image datasets from a small original dataset using three augmentation families:\r\n\r\n1. **Traditional Augmentation**: Flips, rotations, scaling, cropping, color jitter, etc., implemented via Albumentations.\r\n2. **Neural Style Transfer (NST)**: Applies artistic/domain-specific textures from style images, implemented with PyTorch + pre-trained fast NST models.\r\n3. **Patch Mixing**: Combines regions from different images (CutMix, MixUp) to boost structural diversity.\r\n\r\n## Goals\r\n\r\n- Produce lightweight, diverse datasets for small-data training scenarios.\r\n- Allow custom combinations of techniques per batch.\r\n\r\n## Features\r\n\r\n- **Gradio-based UI**: For interactive usage, allowing users to upload base datasets and optional style images, choose augmentation pipelines and parameters, and preview generated samples in real-time.\r\n- **Python API & CLI**: For batch automation.\r\n- **Export**: To standard dataset formats (COCO, ImageFolder, etc.).\r\n- **Diversity Scoring**: (LPIPS, FID) with visual reports.\r\n\r\n## Gradio Workflow Example\r\n\r\n1. User uploads original images.\r\n2. Selects techniques (checklist) and parameters (sliders for rotation, blend ratio, style strength).\r\n3. Previews augmented images instantly.\r\n4. Clicks \"Generate & Download\" to export the batch.\r\n",
"bugtrack_url": null,
"license": null,
"summary": "A Python package for generating diverse and enriched image datasets using traditional, neural style transfer, and patch mixing augmentations.",
"version": "0.1",
"project_urls": {
"Homepage": "https://github.com/yourusername/tri_breed_image_generator"
},
"split_keywords": [
"image augmentation",
" dataset generation",
" neural style transfer",
" cutmix",
" mixup",
" computer vision",
" deep learning"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "cc43462b41e98bdbf675021431403e68242b9e6b330fdeb843c2e0504e4c0132",
"md5": "ecc7cb71bd429bbeef0dd6c18d5355c8",
"sha256": "95f924cc560841c982c42777efe6a344f40bd6c90946d2458b9b6255f2cc229b"
},
"downloads": -1,
"filename": "tri_breed_image_generator-0.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "ecc7cb71bd429bbeef0dd6c18d5355c8",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 8846,
"upload_time": "2025-08-14T18:29:43",
"upload_time_iso_8601": "2025-08-14T18:29:43.684484Z",
"url": "https://files.pythonhosted.org/packages/cc/43/462b41e98bdbf675021431403e68242b9e6b330fdeb843c2e0504e4c0132/tri_breed_image_generator-0.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "7651f9c3d3282752f0f57ea1cf16714181eb37e9f55579997b4ed3809716d24d",
"md5": "bfe4d9483f9dcbea5c34a226b7a84c34",
"sha256": "90201a3a68de94b2c74791ad862b2b3c5cab40c62e30e224ccd48a071229609d"
},
"downloads": -1,
"filename": "tri_breed_image_generator-0.1.tar.gz",
"has_sig": false,
"md5_digest": "bfe4d9483f9dcbea5c34a226b7a84c34",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 8172,
"upload_time": "2025-08-14T18:29:45",
"upload_time_iso_8601": "2025-08-14T18:29:45.934108Z",
"url": "https://files.pythonhosted.org/packages/76/51/f9c3d3282752f0f57ea1cf16714181eb37e9f55579997b4ed3809716d24d/tri_breed_image_generator-0.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-08-14 18:29:45",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "yourusername",
"github_project": "tri_breed_image_generator",
"github_not_found": true,
"lcname": "tri-breed-image-generator"
}