triggercalib


Nametriggercalib JSON
Version 1.4.1 PyPI version JSON
download
home_pageNone
SummaryTooling for data-driven efficiencies of the LHCb trigger
upload_time2024-12-16 17:47:55
maintainerNone
docs_urlNone
authorNone
requires_python>=3.6
licenseNone
keywords efficiencies lhcb tistos trigger
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # TriggerCalib - Tooling for trigger efficiencies

This repository contains tools developed for calculating trigger efficiencies in LHCb analyses and studies.
The full documenation for the `TriggerCalib` tools can be found here: [**https://triggercalib.docs.cern.ch/**](https://triggercalib.docs.cern.ch/).

At the core of these tools is the `HltEff` class, which implements the TISTOS method (as laid out in [LHCb-PUB-2014-039](https://cds.cern.ch/record/1701134/files/LHCb-PUB-2014-039.pdf)) to produce trigger efficiencies in ROOT `TH1`/`TH2` histograms.
This will be extended in the near future by a `.yaml`-configurable interface to the class, with the aim of being familiar to users of the [`HltEfficiencyChecker`](https://gitlab.cern.ch/lhcb/DaVinci/-/tree/master/HltEfficiencyChecker) tool for studying MC efficiencies in simulation. 
An additional tool, currently in planning, further extend this functionality by providing users with trigger efficiency correction tables (à la [`PIDCalib2`](https://gitlab.cern.ch/lhcb-rta/pidcalib2)) in key control channels.

If you wish to contribute to TriggerCalib, please see [CONTRIBUTING.md](CONTRIBUTING.md).

## Acknowledgements

We acknowledge funding from the European Union Horizon 2020 research and innovation programme, call H2020-MSCA-ITN-2020, under Grant Agreement n. 956086

<a href="https://www.smarthep.org/">
    <img src="https://www.smarthep.org/wp-content/uploads/2022/11/SmartHEP-Logo-Full-Colour.jpg" alt="SMARTHEP logo" height="64"/>
</a>
<a href="https://www.smarthep.org/">
    <img src="https://www.smarthep.org/wp-content/uploads/2022/11/EU-Logo.jpg" alt="EU flag" height="64"/>
</a>
<a href="https://www.smarthep.org/">
    <img src="https://www.smarthep.org/wp-content/uploads/2022/11/marie_curie_logo-300x182-1.png" alt="MSCA logo" height="64"/>
</a>
            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "triggercalib",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": null,
    "keywords": "efficiencies, lhcb, tistos, trigger",
    "author": null,
    "author_email": "Jamie Gooding <jamie.gooding@cern.ch>",
    "download_url": "https://files.pythonhosted.org/packages/44/7f/5db7ab6bf92a868cd5e2d4556c5bc3073dcb068f7708ee3724715b879e8f/triggercalib-1.4.1.tar.gz",
    "platform": null,
    "description": "# TriggerCalib - Tooling for trigger efficiencies\n\nThis repository contains tools developed for calculating trigger efficiencies in LHCb analyses and studies.\nThe full documenation for the `TriggerCalib` tools can be found here: [**https://triggercalib.docs.cern.ch/**](https://triggercalib.docs.cern.ch/).\n\nAt the core of these tools is the `HltEff` class, which implements the TISTOS method (as laid out in [LHCb-PUB-2014-039](https://cds.cern.ch/record/1701134/files/LHCb-PUB-2014-039.pdf)) to produce trigger efficiencies in ROOT `TH1`/`TH2` histograms.\nThis will be extended in the near future by a `.yaml`-configurable interface to the class, with the aim of being familiar to users of the [`HltEfficiencyChecker`](https://gitlab.cern.ch/lhcb/DaVinci/-/tree/master/HltEfficiencyChecker) tool for studying MC efficiencies in simulation. \nAn additional tool, currently in planning, further extend this functionality by providing users with trigger efficiency correction tables (\u00e0 la [`PIDCalib2`](https://gitlab.cern.ch/lhcb-rta/pidcalib2)) in key control channels.\n\nIf you wish to contribute to TriggerCalib, please see [CONTRIBUTING.md](CONTRIBUTING.md).\n\n## Acknowledgements\n\nWe acknowledge funding from the European Union Horizon 2020 research and innovation programme, call H2020-MSCA-ITN-2020, under Grant Agreement n. 956086\n\n<a href=\"https://www.smarthep.org/\">\n    <img src=\"https://www.smarthep.org/wp-content/uploads/2022/11/SmartHEP-Logo-Full-Colour.jpg\" alt=\"SMARTHEP logo\" height=\"64\"/>\n</a>\n<a href=\"https://www.smarthep.org/\">\n    <img src=\"https://www.smarthep.org/wp-content/uploads/2022/11/EU-Logo.jpg\" alt=\"EU flag\" height=\"64\"/>\n</a>\n<a href=\"https://www.smarthep.org/\">\n    <img src=\"https://www.smarthep.org/wp-content/uploads/2022/11/marie_curie_logo-300x182-1.png\" alt=\"MSCA logo\" height=\"64\"/>\n</a>",
    "bugtrack_url": null,
    "license": null,
    "summary": "Tooling for data-driven efficiencies of the LHCb trigger",
    "version": "1.4.1",
    "project_urls": {
        "Bug Tracker": "https://gitlab.cern.ch/lhcb-rta/triggercalib/-/issues",
        "Documentation": "https://triggercalib.docs.cern.ch/",
        "Homepage": "https://gitlab.cern.ch/lhcb-rta/triggercalib/"
    },
    "split_keywords": [
        "efficiencies",
        " lhcb",
        " tistos",
        " trigger"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "26536832bd7472f4759371efce1965bae29e349fb03351f0a17054d298bcecd2",
                "md5": "5e45bf21a0acd0fd1b084caff1e65fb1",
                "sha256": "3f668f59a9375215156b3a5275997c2f0664e162715f3a6fa50558c3abbb97b4"
            },
            "downloads": -1,
            "filename": "triggercalib-1.4.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "5e45bf21a0acd0fd1b084caff1e65fb1",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 55501,
            "upload_time": "2024-12-16T17:47:54",
            "upload_time_iso_8601": "2024-12-16T17:47:54.223255Z",
            "url": "https://files.pythonhosted.org/packages/26/53/6832bd7472f4759371efce1965bae29e349fb03351f0a17054d298bcecd2/triggercalib-1.4.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "447f5db7ab6bf92a868cd5e2d4556c5bc3073dcb068f7708ee3724715b879e8f",
                "md5": "a53224bd958e8a5076c2091346d0749c",
                "sha256": "090baf49990caae5b098566cadea3c084c270e6c4bc140c39980e05c65bba395"
            },
            "downloads": -1,
            "filename": "triggercalib-1.4.1.tar.gz",
            "has_sig": false,
            "md5_digest": "a53224bd958e8a5076c2091346d0749c",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 365253,
            "upload_time": "2024-12-16T17:47:55",
            "upload_time_iso_8601": "2024-12-16T17:47:55.905781Z",
            "url": "https://files.pythonhosted.org/packages/44/7f/5db7ab6bf92a868cd5e2d4556c5bc3073dcb068f7708ee3724715b879e8f/triggercalib-1.4.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-16 17:47:55",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "triggercalib"
}
        
Elapsed time: 2.03901s