# TRL - Transformer Reinforcement Learning
<div style="text-align: center">
<img src="https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/trl_banner_dark.png" alt="TRL Banner">
</div>
<hr> <br>
<h3 align="center">
<p>A comprehensive library to post-train foundation models</p>
</h3>
<p align="center">
<a href="https://github.com/huggingface/trl/blob/main/LICENSE"><img alt="License" src="https://img.shields.io/github/license/huggingface/trl.svg?color=blue"></a>
<a href="https://huggingface.co/docs/trl/index"><img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/trl/index.svg?down_color=red&down_message=offline&up_color=blue&up_message=online"></a>
<a href="https://github.com/huggingface/trl/releases"><img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/trl.svg"></a>
</p>
## Overview
TRL is a cutting-edge library designed for post-training foundation models using advanced techniques like Supervised Fine-Tuning (SFT), Proximal Policy Optimization (PPO), and Direct Preference Optimization (DPO). Built on top of the [🤗 Transformers](https://github.com/huggingface/transformers) ecosystem, TRL supports a variety of model architectures and modalities, and can be scaled-up across various hardware setups.
## Highlights
- **Efficient and scalable**:
- Leverages [🤗 Accelerate](https://github.com/huggingface/accelerate) to scale from single GPU to multi-node clusters using methods like DDP and DeepSpeed.
- Full integration with [`PEFT`](https://github.com/huggingface/peft) enables training on large models with modest hardware via quantization and LoRA/QLoRA.
- Integrates [Unsloth](https://github.com/unslothai/unsloth) for accelerating training using optimized kernels.
- **Command Line Interface (CLI)**: A simple interface lets you fine-tune and interact with models without needing to write code.
- **Trainers**: Various fine-tuning methods are easily accessible via trainers like [`SFTTrainer`](https://huggingface.co/docs/trl/sft_trainer), [`DPOTrainer`](https://huggingface.co/docs/trl/dpo_trainer), [`RewardTrainer`](https://huggingface.co/docs/trl/reward_trainer), [`ORPOTrainer`](https://huggingface.co/docs/trl/orpo_trainer) and more.
- **AutoModels**: Use pre-defined model classes like [`AutoModelForCausalLMWithValueHead`](https://huggingface.co/docs/trl/models#trl.AutoModelForCausalLMWithValueHead) to simplify reinforcement learning (RL) with LLMs.
## Installation
### Python Package
Install the library using `pip`:
```bash
pip install trl
```
### From source
If you want to use the latest features before an official release, you can install TRL from source:
```bash
pip install git+https://github.com/huggingface/trl.git
```
### Repository
If you want to use the examples you can clone the repository with the following command:
```bash
git clone https://github.com/huggingface/trl.git
```
## Command Line Interface (CLI)
You can use the TRL Command Line Interface (CLI) to quickly get started with Supervised Fine-tuning (SFT) and Direct Preference Optimization (DPO), or vibe check your model with the chat CLI:
**SFT:**
```bash
trl sft --model_name_or_path Qwen/Qwen2.5-0.5B \
--dataset_name trl-lib/Capybara \
--output_dir Qwen2.5-0.5B-SFT
```
**DPO:**
```bash
trl dpo --model_name_or_path Qwen/Qwen2.5-0.5B-Instruct \
--dataset_name argilla/Capybara-Preferences \
--output_dir Qwen2.5-0.5B-DPO
```
**Chat:**
```bash
trl chat --model_name_or_path Qwen/Qwen2.5-0.5B-Instruct
```
Read more about CLI in the [relevant documentation section](https://huggingface.co/docs/trl/main/en/clis) or use `--help` for more details.
## How to use
For more flexibility and control over training, TRL provides dedicated trainer classes to post-train language models or PEFT adapters on a custom dataset. Each trainer in TRL is a light wrapper around the 🤗 Transformers trainer and natively supports distributed training methods like DDP, DeepSpeed ZeRO, and FSDP.
### `SFTTrainer`
Here is a basic example of how to use the `SFTTrainer`:
```python
from trl import SFTConfig, SFTTrainer
from datasets import load_dataset
dataset = load_dataset("trl-lib/Capybara", split="train")
training_args = SFTConfig(output_dir="Qwen/Qwen2.5-0.5B-SFT")
trainer = SFTTrainer(
args=training_args,
model="Qwen/Qwen2.5-0.5B",
train_dataset=dataset,
)
trainer.train()
```
### `RewardTrainer`
Here is a basic example of how to use the `RewardTrainer`:
```python
from trl import RewardConfig, RewardTrainer
from datasets import load_dataset
from transformers import AutoModelForSequenceClassification, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
model = AutoModelForSequenceClassification.from_pretrained(
"Qwen/Qwen2.5-0.5B-Instruct", num_labels=1
)
model.config.pad_token_id = tokenizer.pad_token_id
dataset = load_dataset("trl-lib/ultrafeedback_binarized", split="train")
training_args = RewardConfig(output_dir="Qwen2.5-0.5B-Reward", per_device_train_batch_size=2)
trainer = RewardTrainer(
args=training_args,
model=model,
processing_class=tokenizer,
train_dataset=dataset,
)
trainer.train()
```
### `RLOOTrainer`
`RLOOTrainer` implements a [REINFORCE-style optimization](https://huggingface.co/papers/2402.14740) for RLHF that is more performant and memory-efficient than PPO. Here is a basic example of how to use the `RLOOTrainer`:
```python
from trl import RLOOConfig, RLOOTrainer, apply_chat_template
from datasets import load_dataset
from transformers import (
AutoModelForCausalLM,
AutoModelForSequenceClassification,
AutoTokenizer,
)
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
reward_model = AutoModelForSequenceClassification.from_pretrained(
"Qwen/Qwen2.5-0.5B-Instruct", num_labels=1
)
ref_policy = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
policy = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
dataset = load_dataset("trl-lib/ultrafeedback-prompt")
dataset = dataset.map(apply_chat_template, fn_kwargs={"tokenizer": tokenizer})
dataset = dataset.map(lambda x: tokenizer(x["prompt"]), remove_columns="prompt")
training_args = RLOOConfig(output_dir="Qwen2.5-0.5B-RL")
trainer = RLOOTrainer(
config=training_args,
processing_class=tokenizer,
policy=policy,
ref_policy=ref_policy,
reward_model=reward_model,
train_dataset=dataset["train"],
eval_dataset=dataset["test"],
)
trainer.train()
```
### `DPOTrainer`
`DPOTrainer` implements the popular [Direct Preference Optimization (DPO) algorithm](https://huggingface.co/papers/2305.18290) that was used to post-train Llama 3 and many other models. Here is a basic example of how to use the `DPOTrainer`:
```python
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer
from trl import DPOConfig, DPOTrainer
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
dataset = load_dataset("trl-lib/ultrafeedback_binarized", split="train")
training_args = DPOConfig(output_dir="Qwen2.5-0.5B-DPO")
trainer = DPOTrainer(model=model, args=training_args, train_dataset=dataset, processing_class=tokenizer)
trainer.train()
```
## Development
If you want to contribute to `trl` or customize it to your needs make sure to read the [contribution guide](https://github.com/huggingface/trl/blob/main/CONTRIBUTING.md) and make sure you make a dev install:
```bash
git clone https://github.com/huggingface/trl.git
cd trl/
make dev
```
## Citation
```bibtex
@misc{vonwerra2022trl,
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
title = {TRL: Transformer Reinforcement Learning},
year = {2020},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
## License
This repository's source code is available under the [Apache-2.0 License](LICENSE).
Raw data
{
"_id": null,
"home_page": "https://github.com/huggingface/trl",
"name": "trl",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": "ppo, transformers, huggingface, gpt2, language modeling, rlhf",
"author": "Leandro von Werra",
"author_email": "leandro.vonwerra@gmail.com",
"download_url": null,
"platform": null,
"description": "# TRL - Transformer Reinforcement Learning\n\n<div style=\"text-align: center\">\n<img src=\"https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/trl_banner_dark.png\" alt=\"TRL Banner\">\n</div>\n\n<hr> <br>\n\n<h3 align=\"center\">\n <p>A comprehensive library to post-train foundation models</p>\n</h3>\n\n<p align=\"center\">\n <a href=\"https://github.com/huggingface/trl/blob/main/LICENSE\"><img alt=\"License\" src=\"https://img.shields.io/github/license/huggingface/trl.svg?color=blue\"></a>\n <a href=\"https://huggingface.co/docs/trl/index\"><img alt=\"Documentation\" src=\"https://img.shields.io/website/http/huggingface.co/docs/trl/index.svg?down_color=red&down_message=offline&up_color=blue&up_message=online\"></a>\n <a href=\"https://github.com/huggingface/trl/releases\"><img alt=\"GitHub release\" src=\"https://img.shields.io/github/release/huggingface/trl.svg\"></a>\n</p>\n\n## Overview\n\nTRL is a cutting-edge library designed for post-training foundation models using advanced techniques like Supervised Fine-Tuning (SFT), Proximal Policy Optimization (PPO), and Direct Preference Optimization (DPO). Built on top of the [\ud83e\udd17 Transformers](https://github.com/huggingface/transformers) ecosystem, TRL supports a variety of model architectures and modalities, and can be scaled-up across various hardware setups.\n\n## Highlights\n\n- **Efficient and scalable**: \n - Leverages [\ud83e\udd17 Accelerate](https://github.com/huggingface/accelerate) to scale from single GPU to multi-node clusters using methods like DDP and DeepSpeed.\n - Full integration with [`PEFT`](https://github.com/huggingface/peft) enables training on large models with modest hardware via quantization and LoRA/QLoRA.\n - Integrates [Unsloth](https://github.com/unslothai/unsloth) for accelerating training using optimized kernels.\n\n- **Command Line Interface (CLI)**: A simple interface lets you fine-tune and interact with models without needing to write code.\n\n- **Trainers**: Various fine-tuning methods are easily accessible via trainers like [`SFTTrainer`](https://huggingface.co/docs/trl/sft_trainer), [`DPOTrainer`](https://huggingface.co/docs/trl/dpo_trainer), [`RewardTrainer`](https://huggingface.co/docs/trl/reward_trainer), [`ORPOTrainer`](https://huggingface.co/docs/trl/orpo_trainer) and more.\n\n- **AutoModels**: Use pre-defined model classes like [`AutoModelForCausalLMWithValueHead`](https://huggingface.co/docs/trl/models#trl.AutoModelForCausalLMWithValueHead) to simplify reinforcement learning (RL) with LLMs.\n\n## Installation\n\n### Python Package\n\nInstall the library using `pip`:\n\n```bash\npip install trl\n```\n\n### From source\n\nIf you want to use the latest features before an official release, you can install TRL from source:\n\n```bash\npip install git+https://github.com/huggingface/trl.git\n```\n\n### Repository\n\nIf you want to use the examples you can clone the repository with the following command:\n\n```bash\ngit clone https://github.com/huggingface/trl.git\n```\n\n## Command Line Interface (CLI)\n\nYou can use the TRL Command Line Interface (CLI) to quickly get started with Supervised Fine-tuning (SFT) and Direct Preference Optimization (DPO), or vibe check your model with the chat CLI: \n\n**SFT:**\n\n```bash\ntrl sft --model_name_or_path Qwen/Qwen2.5-0.5B \\\n --dataset_name trl-lib/Capybara \\\n --output_dir Qwen2.5-0.5B-SFT\n```\n\n**DPO:**\n\n```bash\ntrl dpo --model_name_or_path Qwen/Qwen2.5-0.5B-Instruct \\\n --dataset_name argilla/Capybara-Preferences \\\n --output_dir Qwen2.5-0.5B-DPO \n```\n\n**Chat:**\n\n```bash\ntrl chat --model_name_or_path Qwen/Qwen2.5-0.5B-Instruct\n```\n\nRead more about CLI in the [relevant documentation section](https://huggingface.co/docs/trl/main/en/clis) or use `--help` for more details.\n\n## How to use\n\nFor more flexibility and control over training, TRL provides dedicated trainer classes to post-train language models or PEFT adapters on a custom dataset. Each trainer in TRL is a light wrapper around the \ud83e\udd17 Transformers trainer and natively supports distributed training methods like DDP, DeepSpeed ZeRO, and FSDP.\n\n### `SFTTrainer`\n\nHere is a basic example of how to use the `SFTTrainer`:\n\n```python\nfrom trl import SFTConfig, SFTTrainer\nfrom datasets import load_dataset\n\ndataset = load_dataset(\"trl-lib/Capybara\", split=\"train\")\n\ntraining_args = SFTConfig(output_dir=\"Qwen/Qwen2.5-0.5B-SFT\")\ntrainer = SFTTrainer(\n args=training_args,\n model=\"Qwen/Qwen2.5-0.5B\",\n train_dataset=dataset,\n)\ntrainer.train()\n```\n\n### `RewardTrainer`\n\nHere is a basic example of how to use the `RewardTrainer`:\n\n```python\nfrom trl import RewardConfig, RewardTrainer\nfrom datasets import load_dataset\nfrom transformers import AutoModelForSequenceClassification, AutoTokenizer\n\ntokenizer = AutoTokenizer.from_pretrained(\"Qwen/Qwen2.5-0.5B-Instruct\")\nmodel = AutoModelForSequenceClassification.from_pretrained(\n \"Qwen/Qwen2.5-0.5B-Instruct\", num_labels=1\n)\nmodel.config.pad_token_id = tokenizer.pad_token_id\n\ndataset = load_dataset(\"trl-lib/ultrafeedback_binarized\", split=\"train\")\n\ntraining_args = RewardConfig(output_dir=\"Qwen2.5-0.5B-Reward\", per_device_train_batch_size=2)\ntrainer = RewardTrainer(\n args=training_args,\n model=model,\n processing_class=tokenizer,\n train_dataset=dataset,\n)\ntrainer.train()\n```\n\n### `RLOOTrainer`\n\n`RLOOTrainer` implements a [REINFORCE-style optimization](https://huggingface.co/papers/2402.14740) for RLHF that is more performant and memory-efficient than PPO. Here is a basic example of how to use the `RLOOTrainer`:\n\n```python\nfrom trl import RLOOConfig, RLOOTrainer, apply_chat_template\nfrom datasets import load_dataset\nfrom transformers import (\n AutoModelForCausalLM,\n AutoModelForSequenceClassification,\n AutoTokenizer,\n)\n\ntokenizer = AutoTokenizer.from_pretrained(\"Qwen/Qwen2.5-0.5B-Instruct\")\nreward_model = AutoModelForSequenceClassification.from_pretrained(\n \"Qwen/Qwen2.5-0.5B-Instruct\", num_labels=1\n)\nref_policy = AutoModelForCausalLM.from_pretrained(\"Qwen/Qwen2.5-0.5B-Instruct\")\npolicy = AutoModelForCausalLM.from_pretrained(\"Qwen/Qwen2.5-0.5B-Instruct\")\n\ndataset = load_dataset(\"trl-lib/ultrafeedback-prompt\")\ndataset = dataset.map(apply_chat_template, fn_kwargs={\"tokenizer\": tokenizer})\ndataset = dataset.map(lambda x: tokenizer(x[\"prompt\"]), remove_columns=\"prompt\")\n\ntraining_args = RLOOConfig(output_dir=\"Qwen2.5-0.5B-RL\")\ntrainer = RLOOTrainer(\n config=training_args,\n processing_class=tokenizer,\n policy=policy,\n ref_policy=ref_policy,\n reward_model=reward_model,\n train_dataset=dataset[\"train\"],\n eval_dataset=dataset[\"test\"],\n)\ntrainer.train()\n```\n\n### `DPOTrainer`\n\n`DPOTrainer` implements the popular [Direct Preference Optimization (DPO) algorithm](https://huggingface.co/papers/2305.18290) that was used to post-train Llama 3 and many other models. Here is a basic example of how to use the `DPOTrainer`:\n\n```python\nfrom datasets import load_dataset\nfrom transformers import AutoModelForCausalLM, AutoTokenizer\nfrom trl import DPOConfig, DPOTrainer\n\nmodel = AutoModelForCausalLM.from_pretrained(\"Qwen/Qwen2.5-0.5B-Instruct\")\ntokenizer = AutoTokenizer.from_pretrained(\"Qwen/Qwen2.5-0.5B-Instruct\")\ndataset = load_dataset(\"trl-lib/ultrafeedback_binarized\", split=\"train\")\ntraining_args = DPOConfig(output_dir=\"Qwen2.5-0.5B-DPO\")\ntrainer = DPOTrainer(model=model, args=training_args, train_dataset=dataset, processing_class=tokenizer)\ntrainer.train()\n```\n\n## Development\n\nIf you want to contribute to `trl` or customize it to your needs make sure to read the [contribution guide](https://github.com/huggingface/trl/blob/main/CONTRIBUTING.md) and make sure you make a dev install:\n\n```bash\ngit clone https://github.com/huggingface/trl.git\ncd trl/\nmake dev\n```\n\n## Citation\n\n```bibtex\n@misc{vonwerra2022trl,\n author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou\u00e9dec},\n title = {TRL: Transformer Reinforcement Learning},\n year = {2020},\n publisher = {GitHub},\n journal = {GitHub repository},\n howpublished = {\\url{https://github.com/huggingface/trl}}\n}\n```\n\n## License\n\nThis repository's source code is available under the [Apache-2.0 License](LICENSE).\n",
"bugtrack_url": null,
"license": "Apache 2.0",
"summary": "Train transformer language models with reinforcement learning.",
"version": "0.12.1",
"project_urls": {
"Homepage": "https://github.com/huggingface/trl"
},
"split_keywords": [
"ppo",
" transformers",
" huggingface",
" gpt2",
" language modeling",
" rlhf"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "9c3b202af2f5bca77e019fb597892f98947987da5ed8dfdd7d9ed02a4903692d",
"md5": "d55914c62067f48bd7c3f8a8e16cb552",
"sha256": "502b958ac95313bd3e1a31ce91bc852b14f90303bc9b973ede1ee959f40c5c5a"
},
"downloads": -1,
"filename": "trl-0.12.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "d55914c62067f48bd7c3f8a8e16cb552",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9",
"size": 310901,
"upload_time": "2024-11-14T10:34:58",
"upload_time_iso_8601": "2024-11-14T10:34:58.918198Z",
"url": "https://files.pythonhosted.org/packages/9c/3b/202af2f5bca77e019fb597892f98947987da5ed8dfdd7d9ed02a4903692d/trl-0.12.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-11-14 10:34:58",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "huggingface",
"github_project": "trl",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [],
"lcname": "trl"
}