| Name | ts-ml-bundle JSON |
| Version |
0.3.0
JSON |
| download |
| home_page | None |
| Summary | CLI tool to generate Databricks ML platform project structure with governance and best practices |
| upload_time | 2025-09-07 05:27:11 |
| maintainer | None |
| docs_url | None |
| author | Satyendra |
| requires_python | <4.0.0,>=3.8.1 |
| license | None |
| keywords |
databricks
mlops
ml-platform
template
cli
|
| VCS |
 |
| bugtrack_url |
|
| requirements |
No requirements were recorded.
|
| Travis-CI |
No Travis.
|
| coveralls test coverage |
No coveralls.
|
# Databricks ML Bundle CLI
A CLI tool to generate Databricks ML platform project structures with governance and best practices.
## Installation
```bash
pip install ts-ml-bundle
```
## Usage
Generate a new ML project:
```bash
ts-ml-init --name my-ml-project --workspace-host https://your-workspace.cloud.databricks.com --model-type segmentation --use-gpu
```
Or use the short command:
```bash
tml-init -n my-ml-project -w https://your-workspace.cloud.databricks.com -m classification
```
### Options
- `--name, -n`: Project name (required)
- `--output-dir, -o`: Output directory (default: current directory)
- `--workspace-host, -w`: Databricks workspace URL (required)
- `--model-type, -m`: Model type - classification, regression, segmentation, nlp, custom (default: custom)
- `--use-gpu`: Enable GPU configuration for training
## Generated Structure
The CLI generates a complete ML platform project with:
- **Multi-environment support** (dev/stg/prod)
- **Unity Catalog integration**
- **MLflow experiment tracking**
- **Quality gates and approvals**
- **CI/CD pipeline with GitHub Actions**
- **Cluster policies and security**
- **Modular Python package structure**
## Example
```bash
# Generate a computer vision project
databricks-ml-init \
--name vista-segmentation \
--workspace-host https://my-workspace.cloud.databricks.com \
--model-type segmentation \
--use-gpu
# Navigate to project
cd vista-segmentation
# Install dependencies
pip install -r requirements.txt
# Deploy to Databricks
databricks bundle validate --target dev
databricks bundle deploy --target dev
```
## Features
- ✅ **Governance-first**: Built-in security, permissions, and audit trails
- ✅ **Multi-environment**: Separate dev/staging/production environments
- ✅ **Model-specific**: Templates optimized for different ML use cases
- ✅ **Production-ready**: Includes serving endpoints, monitoring, and CI/CD
- ✅ **Unity Catalog**: Full integration with Databricks governance platform
## Development
```bash
# Clone repository
git clone https://github.com/yourusername/ts-ml-bundle-cli
cd ts-ml-bundle-cli
# Install with Poetry
poetry install
# Run locally
poetry run ts-ml-init --help
```
## Publishing to PyPI
```bash
# Build package
poetry build
# Publish to PyPI
poetry publish
```
## License
MIT License
Raw data
{
"_id": null,
"home_page": null,
"name": "ts-ml-bundle",
"maintainer": null,
"docs_url": null,
"requires_python": "<4.0.0,>=3.8.1",
"maintainer_email": null,
"keywords": "databricks, mlops, ml-platform, template, cli",
"author": "Satyendra",
"author_email": "skumar@tetrascience.com",
"download_url": "https://files.pythonhosted.org/packages/3b/82/3e035b4c75ce467739ce4836d9c991f0204160d840d10c4c33ddd176821a/ts_ml_bundle-0.3.0.tar.gz",
"platform": null,
"description": "# Databricks ML Bundle CLI\n\nA CLI tool to generate Databricks ML platform project structures with governance and best practices.\n\n## Installation\n\n```bash\npip install ts-ml-bundle\n```\n\n## Usage\n\nGenerate a new ML project:\n\n```bash\nts-ml-init --name my-ml-project --workspace-host https://your-workspace.cloud.databricks.com --model-type segmentation --use-gpu\n```\n\nOr use the short command:\n\n```bash\ntml-init -n my-ml-project -w https://your-workspace.cloud.databricks.com -m classification\n```\n\n### Options\n\n- `--name, -n`: Project name (required)\n- `--output-dir, -o`: Output directory (default: current directory)\n- `--workspace-host, -w`: Databricks workspace URL (required)\n- `--model-type, -m`: Model type - classification, regression, segmentation, nlp, custom (default: custom)\n- `--use-gpu`: Enable GPU configuration for training\n\n## Generated Structure\n\nThe CLI generates a complete ML platform project with:\n\n- **Multi-environment support** (dev/stg/prod)\n- **Unity Catalog integration**\n- **MLflow experiment tracking**\n- **Quality gates and approvals**\n- **CI/CD pipeline with GitHub Actions**\n- **Cluster policies and security**\n- **Modular Python package structure**\n\n## Example\n\n```bash\n# Generate a computer vision project\ndatabricks-ml-init \\\n --name vista-segmentation \\\n --workspace-host https://my-workspace.cloud.databricks.com \\\n --model-type segmentation \\\n --use-gpu\n\n# Navigate to project\ncd vista-segmentation\n\n# Install dependencies\npip install -r requirements.txt\n\n# Deploy to Databricks\ndatabricks bundle validate --target dev\ndatabricks bundle deploy --target dev\n```\n\n## Features\n\n- \u2705 **Governance-first**: Built-in security, permissions, and audit trails\n- \u2705 **Multi-environment**: Separate dev/staging/production environments\n- \u2705 **Model-specific**: Templates optimized for different ML use cases\n- \u2705 **Production-ready**: Includes serving endpoints, monitoring, and CI/CD\n- \u2705 **Unity Catalog**: Full integration with Databricks governance platform\n\n## Development\n\n```bash\n# Clone repository\ngit clone https://github.com/yourusername/ts-ml-bundle-cli\ncd ts-ml-bundle-cli\n\n# Install with Poetry\npoetry install\n\n# Run locally\npoetry run ts-ml-init --help\n```\n\n## Publishing to PyPI\n\n```bash\n# Build package\npoetry build\n\n# Publish to PyPI\npoetry publish\n```\n\n## License\nMIT License\n",
"bugtrack_url": null,
"license": null,
"summary": "CLI tool to generate Databricks ML platform project structure with governance and best practices",
"version": "0.3.0",
"project_urls": {
"Documentation": "https://github.com/satendra4u/ts-ml-bundle-cli",
"Homepage": "https://github.com/satendra4u/ts-ml-bundle-cli",
"Repository": "https://github.com/satendra4u/ts-ml-bundle-cli"
},
"split_keywords": [
"databricks",
" mlops",
" ml-platform",
" template",
" cli"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "a4693d40f16ba945ea83f9e4ac6df8730266dc33c1ce66570056d7cd28b4234c",
"md5": "159a7f912c8c5a4cd24e303b61832282",
"sha256": "f855084718e299c89f4d0b98d596c71d0f18b99f8eac4cf544a5dbe0c42bfe0d"
},
"downloads": -1,
"filename": "ts_ml_bundle-0.3.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "159a7f912c8c5a4cd24e303b61832282",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0.0,>=3.8.1",
"size": 18289,
"upload_time": "2025-09-07T05:27:10",
"upload_time_iso_8601": "2025-09-07T05:27:10.469900Z",
"url": "https://files.pythonhosted.org/packages/a4/69/3d40f16ba945ea83f9e4ac6df8730266dc33c1ce66570056d7cd28b4234c/ts_ml_bundle-0.3.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "3b823e035b4c75ce467739ce4836d9c991f0204160d840d10c4c33ddd176821a",
"md5": "8ede371f1d9c14b0a8805407d0fbd82a",
"sha256": "b040c7ff9f17f88130cc016f6958c01f590aee36757c2cb998a35d7e83d859ab"
},
"downloads": -1,
"filename": "ts_ml_bundle-0.3.0.tar.gz",
"has_sig": false,
"md5_digest": "8ede371f1d9c14b0a8805407d0fbd82a",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0.0,>=3.8.1",
"size": 12328,
"upload_time": "2025-09-07T05:27:11",
"upload_time_iso_8601": "2025-09-07T05:27:11.642352Z",
"url": "https://files.pythonhosted.org/packages/3b/82/3e035b4c75ce467739ce4836d9c991f0204160d840d10c4c33ddd176821a/ts_ml_bundle-0.3.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-09-07 05:27:11",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "satendra4u",
"github_project": "ts-ml-bundle-cli",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "ts-ml-bundle"
}