[![Status](https://img.shields.io/pypi/status/tssm)](https://pypi.python.org/pypi/tssm)
[![Version](https://img.shields.io/pypi/v/tssm.svg)](https://pypi.python.org/pypi/tssm)
[![Python Version](https://img.shields.io/pypi/pyversions/tssm)](https://pypi.python.org/pypi/tssm)
[![Wheel](https://img.shields.io/pypi/wheel/tssm)](https://pypi.python.org/pypi/tssm)
[![PyPI - License](https://img.shields.io/pypi/l/tssm)](https://opensource.org/licenses/BSD-3-Clause)
[![Last Commit](https://git.fh-aachen.de/tb5152e/tssm/-/jobs/artifacts/main/raw/public/badges/last_commit.svg?job=badges)](https://git.fh-aachen.de/tb5152e/tssm/-/commits/main)
[![Last Release](https://git.fh-aachen.de/tb5152e/tssm/-/jobs/artifacts/main/raw/public/badges/last_release.svg?job=badges)](https://git.fh-aachen.de/tb5152e/tssm/-/commits/main)
[![Latest Release](https://git.fh-aachen.de/tb5152e/tssm/-/badges/release.svg)](https://git.fh-aachen.de/tb5152e/diversityfactor/-/releases)
[![OpenIssues](https://git.fh-aachen.de/tb5152e/tssm/-/jobs/artifacts/main/raw/public/badges/open_issues.svg?job=badges)](https://git.fh-aachen.de/tb5152e/tssm/-/issues)
[![Documentation Status](https://readthedocs.org/projects/tssm/badge/?version=latest)](https://tssm.readthedocs.io/en/latest/?badge=latest)
[![pipeline status](https://git.fh-aachen.de/tb5152e/tssm/badges/main/pipeline.svg)](https://git.fh-aachen.de/tb5152e/tssm/-/commits/main)
[![coverage report](https://git.fh-aachen.de/tb5152e/tssm/badges/main/coverage.svg)](https://git.fh-aachen.de/tb5152e/tssm/-/commits/main)
[![Pylint](https://git.fh-aachen.de/tb5152e/tssm/-/jobs/artifacts/main/raw/public/pylint/pylint.svg&job=pylint)](https://pylint.pycqa.org/en/latest/)
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
[![Imports: isort](https://img.shields.io/badge/%20imports-isort-%231674b1&labelColor=ef8336)](https://pycqa.github.io/isort/)
[![Checked with mypy](https://img.shields.io/badge/mypy-checked-blue)](http://mypy-lang.org/)
[![security: bandit](https://img.shields.io/badge/security-bandit-success.svg)](https://github.com/PyCQA/bandit)
[![made-with-python](https://img.shields.io/badge/Made%20with-Python-1f425f.svg)](https://www.python.org/)
<a href="https://www.fh-aachen.de/forschung/solar-institut-juelich"><img src="https://www.fh-aachen.de/fileadmin/ins/ins_sij/Wortmarke_SIJ_ts_web.jpg"
alt="Solar Institute Juelich Logo"></a>
# Time Series Scaling Module (TSSM)
<img src="./docs/sources/_static/Logo.svg" width="100" align="left">
**TSSM** is a python package for the up-scaling of time series or load such as electricity, heating, etc.
**Warning**
```{warning}
This package is under heavy development!
```
## Getting started
### Install TSSM
Install tssm directly from PyPi as follows:
```console
pip install tssm
```
Further installation instructions can be found in the [**documentation**](http://tssm.rtfd.io/) under 'Getting started'.
### Usage
example usages can be found in the [**examples'**](https://git.fh-aachen.de/tb5152e/tssm/-/blob/main/examples) folder.
#### Basic workflow
A small example how tssm can be used is described as follows:
```python
# import module and Daily period variable
from tssm import TimeSeriesScalingModule as tssm, DAILY
# initialize class with a number of buildings of 202 with a simultaneity factor of 0.786
scaling = tssm(number_of_buildings=202, simultaneity_factor=0.786)
# read profile from data.csv file and use the Electricity and Date column
scaling.data.read_profile_from_csv_with_date(path="./data.csv", column_of_load="Electricity", column_of_date="Date")
# calculate linear scaled values with a daily simultaneity factor and average value
daily_scaled_values = scaling.calculate_using_average_values(period=DAILY)
```
#### Examples
A [**first example**](https://git.fh-aachen.de/tb5152e/tssm/-/blob/main/examples/example_linear.py) shows the linear approach. It scales the time series between the scaled time series and an average.
A [**second example**](https://git.fh-aachen.de/tb5152e/tssm/-/blob/main/examples/example_scaling.py) shows the scaling approach. It scales the time series between the scaled time series and a scaling time
series.
A [**third example**](https://git.fh-aachen.de/tb5152e/tssm/-/blob/main/examples/example_normal_distribution.py) shows the normal distribution approach. It scales the time series by applying a normal
distribution to every time step.
A [**fourth example**](https://git.fh-aachen.de/tb5152e/tssm/-/blob/main/examples/example_of_different_method_2_import_profiles.py) shows the different ways to import the data.
A [**fifth example**](https://git.fh-aachen.de/tb5152e/tssm/-/blob/main/examples/example_speed_comparison.py) shows the speed of the different approaches.
### License
The module is licensed under BSD 3-Clause License.
Further, License information can be found [**here**](https://git.fh-aachen.de/tb5152e/tssm/-/blob/main/LICENSE).
### Reference
### Acknowledgements
## Content
The documentation of the tssm code can be found [**here**](http://tssm.rtfd.io/).
Raw data
{
"_id": null,
"home_page": "https://git.fh-aachen.de/tb5152e/tssm",
"name": "tssm",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": "",
"keywords": "load,simultaneity factor,scaling,load profile,time series",
"author": "Tobias Blanke & Dominik Fischer",
"author_email": "",
"download_url": "https://files.pythonhosted.org/packages/71/e0/86114dcd2f73ca76b78d07ff3985fdc6f50ca9ef4fb161d4a53bda455a0e/tssm-0.0.4.tar.gz",
"platform": "unix",
"description": "[![Status](https://img.shields.io/pypi/status/tssm)](https://pypi.python.org/pypi/tssm)\r\n[![Version](https://img.shields.io/pypi/v/tssm.svg)](https://pypi.python.org/pypi/tssm)\r\n[![Python Version](https://img.shields.io/pypi/pyversions/tssm)](https://pypi.python.org/pypi/tssm)\r\n[![Wheel](https://img.shields.io/pypi/wheel/tssm)](https://pypi.python.org/pypi/tssm)\r\n[![PyPI - License](https://img.shields.io/pypi/l/tssm)](https://opensource.org/licenses/BSD-3-Clause)\r\n\r\n[![Last Commit](https://git.fh-aachen.de/tb5152e/tssm/-/jobs/artifacts/main/raw/public/badges/last_commit.svg?job=badges)](https://git.fh-aachen.de/tb5152e/tssm/-/commits/main)\r\n[![Last Release](https://git.fh-aachen.de/tb5152e/tssm/-/jobs/artifacts/main/raw/public/badges/last_release.svg?job=badges)](https://git.fh-aachen.de/tb5152e/tssm/-/commits/main)\r\n[![Latest Release](https://git.fh-aachen.de/tb5152e/tssm/-/badges/release.svg)](https://git.fh-aachen.de/tb5152e/diversityfactor/-/releases)\r\n[![OpenIssues](https://git.fh-aachen.de/tb5152e/tssm/-/jobs/artifacts/main/raw/public/badges/open_issues.svg?job=badges)](https://git.fh-aachen.de/tb5152e/tssm/-/issues)\r\n\r\n[![Documentation Status](https://readthedocs.org/projects/tssm/badge/?version=latest)](https://tssm.readthedocs.io/en/latest/?badge=latest)\r\n[![pipeline status](https://git.fh-aachen.de/tb5152e/tssm/badges/main/pipeline.svg)](https://git.fh-aachen.de/tb5152e/tssm/-/commits/main)\r\n[![coverage report](https://git.fh-aachen.de/tb5152e/tssm/badges/main/coverage.svg)](https://git.fh-aachen.de/tb5152e/tssm/-/commits/main)\r\n[![Pylint](https://git.fh-aachen.de/tb5152e/tssm/-/jobs/artifacts/main/raw/public/pylint/pylint.svg&job=pylint)](https://pylint.pycqa.org/en/latest/)\r\n[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)\r\n[![Imports: isort](https://img.shields.io/badge/%20imports-isort-%231674b1&labelColor=ef8336)](https://pycqa.github.io/isort/)\r\n[![Checked with mypy](https://img.shields.io/badge/mypy-checked-blue)](http://mypy-lang.org/)\r\n[![security: bandit](https://img.shields.io/badge/security-bandit-success.svg)](https://github.com/PyCQA/bandit)\r\n[![made-with-python](https://img.shields.io/badge/Made%20with-Python-1f425f.svg)](https://www.python.org/)\r\n\r\n\r\n<a href=\"https://www.fh-aachen.de/forschung/solar-institut-juelich\"><img src=\"https://www.fh-aachen.de/fileadmin/ins/ins_sij/Wortmarke_SIJ_ts_web.jpg\" \r\nalt=\"Solar Institute Juelich Logo\"></a> \r\n\r\n# Time Series Scaling Module (TSSM)\r\n<img src=\"./docs/sources/_static/Logo.svg\" width=\"100\" align=\"left\">\r\n\r\n**TSSM** is a python package for the up-scaling of time series or load such as electricity, heating, etc. \r\n\r\n\r\n**Warning**\r\n```{warning} \r\nThis package is under heavy development!\r\n```\r\n\r\n## Getting started\r\n\r\n### Install TSSM\r\n\r\nInstall tssm directly from PyPi as follows: \r\n\r\n```console\r\npip install tssm\r\n```\r\n\r\nFurther installation instructions can be found in the [**documentation**](http://tssm.rtfd.io/) under 'Getting started'.\r\n\r\n\r\n### Usage\r\n\r\nexample usages can be found in the [**examples'**](https://git.fh-aachen.de/tb5152e/tssm/-/blob/main/examples) folder.\r\n\r\n\r\n#### Basic workflow\r\n\r\nA small example how tssm can be used is described as follows:\r\n\r\n```python\r\n# import module and Daily period variable\r\nfrom tssm import TimeSeriesScalingModule as tssm, DAILY\r\n\r\n# initialize class with a number of buildings of 202 with a simultaneity factor of 0.786\r\nscaling = tssm(number_of_buildings=202, simultaneity_factor=0.786)\r\n# read profile from data.csv file and use the Electricity and Date column\r\nscaling.data.read_profile_from_csv_with_date(path=\"./data.csv\", column_of_load=\"Electricity\", column_of_date=\"Date\")\r\n# calculate linear scaled values with a daily simultaneity factor and average value\r\ndaily_scaled_values = scaling.calculate_using_average_values(period=DAILY)\r\n```\r\n\r\n#### Examples\r\nA [**first example**](https://git.fh-aachen.de/tb5152e/tssm/-/blob/main/examples/example_linear.py) shows the linear approach. It scales the time series between the scaled time series and an average.\r\n\r\nA [**second example**](https://git.fh-aachen.de/tb5152e/tssm/-/blob/main/examples/example_scaling.py) shows the scaling approach. It scales the time series between the scaled time series and a scaling time \r\nseries.\r\n\r\nA [**third example**](https://git.fh-aachen.de/tb5152e/tssm/-/blob/main/examples/example_normal_distribution.py) shows the normal distribution approach. It scales the time series by applying a normal \r\ndistribution to every time step.\r\n\r\nA [**fourth example**](https://git.fh-aachen.de/tb5152e/tssm/-/blob/main/examples/example_of_different_method_2_import_profiles.py) shows the different ways to import the data.\r\n\r\nA [**fifth example**](https://git.fh-aachen.de/tb5152e/tssm/-/blob/main/examples/example_speed_comparison.py) shows the speed of the different approaches.\r\n\r\n### License\r\n\r\nThe module is licensed under BSD 3-Clause License.\r\n\r\nFurther, License information can be found [**here**](https://git.fh-aachen.de/tb5152e/tssm/-/blob/main/LICENSE).\r\n\r\n### Reference\r\n\r\n### Acknowledgements\r\n\r\n\r\n## Content\r\n\r\nThe documentation of the tssm code can be found [**here**](http://tssm.rtfd.io/).\r\n",
"bugtrack_url": null,
"license": "BSD 3-Clause License",
"summary": "Package to create out of a single load profile a profile for a whole district using the diversity factor",
"version": "0.0.4",
"project_urls": {
"Homepage": "https://git.fh-aachen.de/tb5152e/tssm"
},
"split_keywords": [
"load",
"simultaneity factor",
"scaling",
"load profile",
"time series"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "40cf26d636b768bec94d84cb65096233731d39da47e790b671a814e13e5e43c0",
"md5": "be040a92e6e747c4e6c5d99519019da7",
"sha256": "8189a2a2b2c12f6bc1346d42560013b2a4afd1c7601185c12df59cb230330987"
},
"downloads": -1,
"filename": "tssm-0.0.4-py3-none-any.whl",
"has_sig": false,
"md5_digest": "be040a92e6e747c4e6c5d99519019da7",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 114039,
"upload_time": "2023-06-13T14:22:14",
"upload_time_iso_8601": "2023-06-13T14:22:14.043090Z",
"url": "https://files.pythonhosted.org/packages/40/cf/26d636b768bec94d84cb65096233731d39da47e790b671a814e13e5e43c0/tssm-0.0.4-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "71e086114dcd2f73ca76b78d07ff3985fdc6f50ca9ef4fb161d4a53bda455a0e",
"md5": "5b4bea8b5364382e32a9a52875509036",
"sha256": "e498e0fc2a06c3a8cfc067433135011524c888b043b91aba0901c7a812df2f29"
},
"downloads": -1,
"filename": "tssm-0.0.4.tar.gz",
"has_sig": false,
"md5_digest": "5b4bea8b5364382e32a9a52875509036",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 115870,
"upload_time": "2023-06-13T14:22:16",
"upload_time_iso_8601": "2023-06-13T14:22:16.245942Z",
"url": "https://files.pythonhosted.org/packages/71/e0/86114dcd2f73ca76b78d07ff3985fdc6f50ca9ef4fb161d4a53bda455a0e/tssm-0.0.4.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-06-13 14:22:16",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "tssm"
}