tssm


Nametssm JSON
Version 0.0.4 PyPI version JSON
download
home_pagehttps://git.fh-aachen.de/tb5152e/tssm
SummaryPackage to create out of a single load profile a profile for a whole district using the diversity factor
upload_time2023-06-13 14:22:16
maintainer
docs_urlNone
authorTobias Blanke & Dominik Fischer
requires_python>=3.8
licenseBSD 3-Clause License
keywords load simultaneity factor scaling load profile time series
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![Status](https://img.shields.io/pypi/status/tssm)](https://pypi.python.org/pypi/tssm)
[![Version](https://img.shields.io/pypi/v/tssm.svg)](https://pypi.python.org/pypi/tssm)
[![Python Version](https://img.shields.io/pypi/pyversions/tssm)](https://pypi.python.org/pypi/tssm)
[![Wheel](https://img.shields.io/pypi/wheel/tssm)](https://pypi.python.org/pypi/tssm)
[![PyPI - License](https://img.shields.io/pypi/l/tssm)](https://opensource.org/licenses/BSD-3-Clause)

[![Last Commit](https://git.fh-aachen.de/tb5152e/tssm/-/jobs/artifacts/main/raw/public/badges/last_commit.svg?job=badges)](https://git.fh-aachen.de/tb5152e/tssm/-/commits/main)
[![Last Release](https://git.fh-aachen.de/tb5152e/tssm/-/jobs/artifacts/main/raw/public/badges/last_release.svg?job=badges)](https://git.fh-aachen.de/tb5152e/tssm/-/commits/main)
[![Latest Release](https://git.fh-aachen.de/tb5152e/tssm/-/badges/release.svg)](https://git.fh-aachen.de/tb5152e/diversityfactor/-/releases)
[![OpenIssues](https://git.fh-aachen.de/tb5152e/tssm/-/jobs/artifacts/main/raw/public/badges/open_issues.svg?job=badges)](https://git.fh-aachen.de/tb5152e/tssm/-/issues)

[![Documentation Status](https://readthedocs.org/projects/tssm/badge/?version=latest)](https://tssm.readthedocs.io/en/latest/?badge=latest)
[![pipeline status](https://git.fh-aachen.de/tb5152e/tssm/badges/main/pipeline.svg)](https://git.fh-aachen.de/tb5152e/tssm/-/commits/main)
[![coverage report](https://git.fh-aachen.de/tb5152e/tssm/badges/main/coverage.svg)](https://git.fh-aachen.de/tb5152e/tssm/-/commits/main)
[![Pylint](https://git.fh-aachen.de/tb5152e/tssm/-/jobs/artifacts/main/raw/public/pylint/pylint.svg&job=pylint)](https://pylint.pycqa.org/en/latest/)
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
[![Imports: isort](https://img.shields.io/badge/%20imports-isort-%231674b1&labelColor=ef8336)](https://pycqa.github.io/isort/)
[![Checked with mypy](https://img.shields.io/badge/mypy-checked-blue)](http://mypy-lang.org/)
[![security: bandit](https://img.shields.io/badge/security-bandit-success.svg)](https://github.com/PyCQA/bandit)
[![made-with-python](https://img.shields.io/badge/Made%20with-Python-1f425f.svg)](https://www.python.org/)


<a href="https://www.fh-aachen.de/forschung/solar-institut-juelich"><img src="https://www.fh-aachen.de/fileadmin/ins/ins_sij/Wortmarke_SIJ_ts_web.jpg" 
alt="Solar Institute Juelich Logo"></a> 

# Time Series Scaling Module  (TSSM)
<img src="./docs/sources/_static/Logo.svg" width="100" align="left">

**TSSM** is a python package for the up-scaling of time series or load such as electricity, heating, etc. 


**Warning**
```{warning} 
This package is under heavy development!
```

## Getting started

### Install TSSM

Install tssm directly from PyPi as follows: 

```console
pip install tssm
```

Further installation instructions can be found in the [**documentation**](http://tssm.rtfd.io/) under 'Getting started'.


### Usage

example usages can be found in the [**examples'**](https://git.fh-aachen.de/tb5152e/tssm/-/blob/main/examples) folder.


#### Basic workflow

A small example how tssm can be used is described as follows:

```python
# import module and Daily period variable
from tssm import TimeSeriesScalingModule as tssm, DAILY

# initialize class with a number of buildings of 202 with a simultaneity factor of 0.786
scaling = tssm(number_of_buildings=202, simultaneity_factor=0.786)
# read profile from data.csv file and use the Electricity and Date column
scaling.data.read_profile_from_csv_with_date(path="./data.csv", column_of_load="Electricity", column_of_date="Date")
# calculate linear scaled values with a daily simultaneity factor and average value
daily_scaled_values = scaling.calculate_using_average_values(period=DAILY)
```

#### Examples
A [**first example**](https://git.fh-aachen.de/tb5152e/tssm/-/blob/main/examples/example_linear.py) shows the linear approach. It scales the time series between the scaled time series and an average.

A [**second example**](https://git.fh-aachen.de/tb5152e/tssm/-/blob/main/examples/example_scaling.py) shows the scaling approach. It scales the time series between the scaled time series and a scaling time 
series.

A [**third example**](https://git.fh-aachen.de/tb5152e/tssm/-/blob/main/examples/example_normal_distribution.py) shows the normal distribution approach. It scales the time series by applying a normal 
distribution to every time step.

A [**fourth example**](https://git.fh-aachen.de/tb5152e/tssm/-/blob/main/examples/example_of_different_method_2_import_profiles.py) shows the different ways to import the data.

A [**fifth example**](https://git.fh-aachen.de/tb5152e/tssm/-/blob/main/examples/example_speed_comparison.py) shows the speed of the different approaches.

### License

The module is licensed under BSD 3-Clause License.

Further, License information can be found [**here**](https://git.fh-aachen.de/tb5152e/tssm/-/blob/main/LICENSE).

### Reference

### Acknowledgements


## Content

The documentation of the tssm code can be found [**here**](http://tssm.rtfd.io/).

            

Raw data

            {
    "_id": null,
    "home_page": "https://git.fh-aachen.de/tb5152e/tssm",
    "name": "tssm",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "",
    "keywords": "load,simultaneity factor,scaling,load profile,time series",
    "author": "Tobias Blanke & Dominik Fischer",
    "author_email": "",
    "download_url": "https://files.pythonhosted.org/packages/71/e0/86114dcd2f73ca76b78d07ff3985fdc6f50ca9ef4fb161d4a53bda455a0e/tssm-0.0.4.tar.gz",
    "platform": "unix",
    "description": "[![Status](https://img.shields.io/pypi/status/tssm)](https://pypi.python.org/pypi/tssm)\r\n[![Version](https://img.shields.io/pypi/v/tssm.svg)](https://pypi.python.org/pypi/tssm)\r\n[![Python Version](https://img.shields.io/pypi/pyversions/tssm)](https://pypi.python.org/pypi/tssm)\r\n[![Wheel](https://img.shields.io/pypi/wheel/tssm)](https://pypi.python.org/pypi/tssm)\r\n[![PyPI - License](https://img.shields.io/pypi/l/tssm)](https://opensource.org/licenses/BSD-3-Clause)\r\n\r\n[![Last Commit](https://git.fh-aachen.de/tb5152e/tssm/-/jobs/artifacts/main/raw/public/badges/last_commit.svg?job=badges)](https://git.fh-aachen.de/tb5152e/tssm/-/commits/main)\r\n[![Last Release](https://git.fh-aachen.de/tb5152e/tssm/-/jobs/artifacts/main/raw/public/badges/last_release.svg?job=badges)](https://git.fh-aachen.de/tb5152e/tssm/-/commits/main)\r\n[![Latest Release](https://git.fh-aachen.de/tb5152e/tssm/-/badges/release.svg)](https://git.fh-aachen.de/tb5152e/diversityfactor/-/releases)\r\n[![OpenIssues](https://git.fh-aachen.de/tb5152e/tssm/-/jobs/artifacts/main/raw/public/badges/open_issues.svg?job=badges)](https://git.fh-aachen.de/tb5152e/tssm/-/issues)\r\n\r\n[![Documentation Status](https://readthedocs.org/projects/tssm/badge/?version=latest)](https://tssm.readthedocs.io/en/latest/?badge=latest)\r\n[![pipeline status](https://git.fh-aachen.de/tb5152e/tssm/badges/main/pipeline.svg)](https://git.fh-aachen.de/tb5152e/tssm/-/commits/main)\r\n[![coverage report](https://git.fh-aachen.de/tb5152e/tssm/badges/main/coverage.svg)](https://git.fh-aachen.de/tb5152e/tssm/-/commits/main)\r\n[![Pylint](https://git.fh-aachen.de/tb5152e/tssm/-/jobs/artifacts/main/raw/public/pylint/pylint.svg&job=pylint)](https://pylint.pycqa.org/en/latest/)\r\n[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)\r\n[![Imports: isort](https://img.shields.io/badge/%20imports-isort-%231674b1&labelColor=ef8336)](https://pycqa.github.io/isort/)\r\n[![Checked with mypy](https://img.shields.io/badge/mypy-checked-blue)](http://mypy-lang.org/)\r\n[![security: bandit](https://img.shields.io/badge/security-bandit-success.svg)](https://github.com/PyCQA/bandit)\r\n[![made-with-python](https://img.shields.io/badge/Made%20with-Python-1f425f.svg)](https://www.python.org/)\r\n\r\n\r\n<a href=\"https://www.fh-aachen.de/forschung/solar-institut-juelich\"><img src=\"https://www.fh-aachen.de/fileadmin/ins/ins_sij/Wortmarke_SIJ_ts_web.jpg\" \r\nalt=\"Solar Institute Juelich Logo\"></a> \r\n\r\n# Time Series Scaling Module  (TSSM)\r\n<img src=\"./docs/sources/_static/Logo.svg\" width=\"100\" align=\"left\">\r\n\r\n**TSSM** is a python package for the up-scaling of time series or load such as electricity, heating, etc. \r\n\r\n\r\n**Warning**\r\n```{warning} \r\nThis package is under heavy development!\r\n```\r\n\r\n## Getting started\r\n\r\n### Install TSSM\r\n\r\nInstall tssm directly from PyPi as follows: \r\n\r\n```console\r\npip install tssm\r\n```\r\n\r\nFurther installation instructions can be found in the [**documentation**](http://tssm.rtfd.io/) under 'Getting started'.\r\n\r\n\r\n### Usage\r\n\r\nexample usages can be found in the [**examples'**](https://git.fh-aachen.de/tb5152e/tssm/-/blob/main/examples) folder.\r\n\r\n\r\n#### Basic workflow\r\n\r\nA small example how tssm can be used is described as follows:\r\n\r\n```python\r\n# import module and Daily period variable\r\nfrom tssm import TimeSeriesScalingModule as tssm, DAILY\r\n\r\n# initialize class with a number of buildings of 202 with a simultaneity factor of 0.786\r\nscaling = tssm(number_of_buildings=202, simultaneity_factor=0.786)\r\n# read profile from data.csv file and use the Electricity and Date column\r\nscaling.data.read_profile_from_csv_with_date(path=\"./data.csv\", column_of_load=\"Electricity\", column_of_date=\"Date\")\r\n# calculate linear scaled values with a daily simultaneity factor and average value\r\ndaily_scaled_values = scaling.calculate_using_average_values(period=DAILY)\r\n```\r\n\r\n#### Examples\r\nA [**first example**](https://git.fh-aachen.de/tb5152e/tssm/-/blob/main/examples/example_linear.py) shows the linear approach. It scales the time series between the scaled time series and an average.\r\n\r\nA [**second example**](https://git.fh-aachen.de/tb5152e/tssm/-/blob/main/examples/example_scaling.py) shows the scaling approach. It scales the time series between the scaled time series and a scaling time \r\nseries.\r\n\r\nA [**third example**](https://git.fh-aachen.de/tb5152e/tssm/-/blob/main/examples/example_normal_distribution.py) shows the normal distribution approach. It scales the time series by applying a normal \r\ndistribution to every time step.\r\n\r\nA [**fourth example**](https://git.fh-aachen.de/tb5152e/tssm/-/blob/main/examples/example_of_different_method_2_import_profiles.py) shows the different ways to import the data.\r\n\r\nA [**fifth example**](https://git.fh-aachen.de/tb5152e/tssm/-/blob/main/examples/example_speed_comparison.py) shows the speed of the different approaches.\r\n\r\n### License\r\n\r\nThe module is licensed under BSD 3-Clause License.\r\n\r\nFurther, License information can be found [**here**](https://git.fh-aachen.de/tb5152e/tssm/-/blob/main/LICENSE).\r\n\r\n### Reference\r\n\r\n### Acknowledgements\r\n\r\n\r\n## Content\r\n\r\nThe documentation of the tssm code can be found [**here**](http://tssm.rtfd.io/).\r\n",
    "bugtrack_url": null,
    "license": "BSD 3-Clause License",
    "summary": "Package to create out of a single load profile a profile for a whole district using the diversity factor",
    "version": "0.0.4",
    "project_urls": {
        "Homepage": "https://git.fh-aachen.de/tb5152e/tssm"
    },
    "split_keywords": [
        "load",
        "simultaneity factor",
        "scaling",
        "load profile",
        "time series"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "40cf26d636b768bec94d84cb65096233731d39da47e790b671a814e13e5e43c0",
                "md5": "be040a92e6e747c4e6c5d99519019da7",
                "sha256": "8189a2a2b2c12f6bc1346d42560013b2a4afd1c7601185c12df59cb230330987"
            },
            "downloads": -1,
            "filename": "tssm-0.0.4-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "be040a92e6e747c4e6c5d99519019da7",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 114039,
            "upload_time": "2023-06-13T14:22:14",
            "upload_time_iso_8601": "2023-06-13T14:22:14.043090Z",
            "url": "https://files.pythonhosted.org/packages/40/cf/26d636b768bec94d84cb65096233731d39da47e790b671a814e13e5e43c0/tssm-0.0.4-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "71e086114dcd2f73ca76b78d07ff3985fdc6f50ca9ef4fb161d4a53bda455a0e",
                "md5": "5b4bea8b5364382e32a9a52875509036",
                "sha256": "e498e0fc2a06c3a8cfc067433135011524c888b043b91aba0901c7a812df2f29"
            },
            "downloads": -1,
            "filename": "tssm-0.0.4.tar.gz",
            "has_sig": false,
            "md5_digest": "5b4bea8b5364382e32a9a52875509036",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 115870,
            "upload_time": "2023-06-13T14:22:16",
            "upload_time_iso_8601": "2023-06-13T14:22:16.245942Z",
            "url": "https://files.pythonhosted.org/packages/71/e0/86114dcd2f73ca76b78d07ff3985fdc6f50ca9ef4fb161d4a53bda455a0e/tssm-0.0.4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-06-13 14:22:16",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "tssm"
}
        
Elapsed time: 1.69980s