tulia


Nametulia JSON
Version 0.2.1 PyPI version JSON
download
home_pagehttps://github.com/chuvalniy/tulia
Summarynumpy based machine learning package with sklearn-like API
upload_time2024-01-12 03:38:17
maintainer
docs_urlNone
authorValentin Belyaev
requires_python
licenseMIT
keywords python machine learning from scratch numpy sklearn-like random forest tree knn
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <div align="center">

![logo](/docs/logo.png)

Tulia: a comprehensive machine learning project entirely from scratch, utilizing the power of Python and numpy.

</div>

## Features

### Simplicity

By encapsulating both the training and predicting logic within just a couple of classes, complexity is greatly reduced compared to popular frameworks that heavily rely on abstraction.
Moreover, the library provided here offers a streamlined approach by maintaining only essential parameters in the model class. 

### Familiar approach

This library uses sklearn API to build the codebase. 

## Example usage

```python
from src.linear import LinearRegression

X_train, X_test, y_train, y_test = ...

lr = LinearRegression(n_steps=10_000, learning_rate=1e-4)
lr.fit(X_train, y_train)

y_pred = lr.predict(X_test)

mse = mean_squared_error(y_pred, y_test)  # Here mean_squared_error() is a pseudocode.
```

## Installation


### To use in code

```sh
pip install tulia
```

### Download a whole library

```sh
git clone https://github.com/chuvalniy/Tulia.git
pip install -r requirements.txt
```

## Testing

Every machine learning model is provided with unit test that verifies correctness of fit and predict methods.

Execute the following command in your project directory to run the tests.

```python
pytest -v
```

## License
MIT License

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/chuvalniy/tulia",
    "name": "tulia",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "python,machine learning,from scratch,numpy,sklearn-like,random forest,tree,knn",
    "author": "Valentin Belyaev",
    "author_email": "chuvalik.work@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/05/32/d1392edf53ee0afd66113b15cbc55e9e25e84a21bf10891402e2bd4b6060/tulia-0.2.1.tar.gz",
    "platform": null,
    "description": "<div align=\"center\">\r\n\r\n![logo](/docs/logo.png)\r\n\r\nTulia: a comprehensive machine learning project entirely from scratch, utilizing the power of Python and numpy.\r\n\r\n</div>\r\n\r\n## Features\r\n\r\n### Simplicity\r\n\r\nBy encapsulating both the training and predicting logic within just a couple of classes, complexity is greatly reduced compared to popular frameworks that heavily rely on abstraction.\r\nMoreover, the library provided here offers a streamlined approach by maintaining only essential parameters in the model class. \r\n\r\n### Familiar approach\r\n\r\nThis library uses sklearn API to build the codebase. \r\n\r\n## Example usage\r\n\r\n```python\r\nfrom src.linear import LinearRegression\r\n\r\nX_train, X_test, y_train, y_test = ...\r\n\r\nlr = LinearRegression(n_steps=10_000, learning_rate=1e-4)\r\nlr.fit(X_train, y_train)\r\n\r\ny_pred = lr.predict(X_test)\r\n\r\nmse = mean_squared_error(y_pred, y_test)  # Here mean_squared_error() is a pseudocode.\r\n```\r\n\r\n## Installation\r\n\r\n\r\n### To use in code\r\n\r\n```sh\r\npip install tulia\r\n```\r\n\r\n### Download a whole library\r\n\r\n```sh\r\ngit clone https://github.com/chuvalniy/Tulia.git\r\npip install -r requirements.txt\r\n```\r\n\r\n## Testing\r\n\r\nEvery machine learning model is provided with unit test that verifies correctness of fit and predict methods.\r\n\r\nExecute the following command in your project directory to run the tests.\r\n\r\n```python\r\npytest -v\r\n```\r\n\r\n## License\r\nMIT License\r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "numpy based machine learning package with sklearn-like API",
    "version": "0.2.1",
    "project_urls": {
        "Homepage": "https://github.com/chuvalniy/tulia"
    },
    "split_keywords": [
        "python",
        "machine learning",
        "from scratch",
        "numpy",
        "sklearn-like",
        "random forest",
        "tree",
        "knn"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "687ba38decddad2464f89f7a3fb5e9fcf3a3fc3a77907dc4605e3416bc728acc",
                "md5": "91af8f6ae3feecd611494175d24a0b59",
                "sha256": "66e1564de6bea956a2d08b6b46bc88ae07cd28d59c0cc193877857a5f72810c3"
            },
            "downloads": -1,
            "filename": "tulia-0.2.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "91af8f6ae3feecd611494175d24a0b59",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 15504,
            "upload_time": "2024-01-12T03:38:15",
            "upload_time_iso_8601": "2024-01-12T03:38:15.456883Z",
            "url": "https://files.pythonhosted.org/packages/68/7b/a38decddad2464f89f7a3fb5e9fcf3a3fc3a77907dc4605e3416bc728acc/tulia-0.2.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "0532d1392edf53ee0afd66113b15cbc55e9e25e84a21bf10891402e2bd4b6060",
                "md5": "14a05ed50d20b65ae626b3a474847840",
                "sha256": "9441baadb620f7bf88d91b28dab1afdd01fb5f912eca0799a92e5ce87a82ba2b"
            },
            "downloads": -1,
            "filename": "tulia-0.2.1.tar.gz",
            "has_sig": false,
            "md5_digest": "14a05ed50d20b65ae626b3a474847840",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 11275,
            "upload_time": "2024-01-12T03:38:17",
            "upload_time_iso_8601": "2024-01-12T03:38:17.337918Z",
            "url": "https://files.pythonhosted.org/packages/05/32/d1392edf53ee0afd66113b15cbc55e9e25e84a21bf10891402e2bd4b6060/tulia-0.2.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-01-12 03:38:17",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "chuvalniy",
    "github_project": "tulia",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [],
    "lcname": "tulia"
}
        
Elapsed time: 1.76979s