tulipy


Nametulipy JSON
Version 0.4.0 PyPI version JSON
download
home_pagehttps://github.com/cirla/tulipy
SummaryFinancial Technical Analysis Indicator Library. Python bindings for https://github.com/TulipCharts/tulipindicators
upload_time2019-04-11 03:37:12
maintainer
docs_urlNone
authorhttps://github.com/cirla/tulipy/blob/master/AUTHORS
requires_python
licenseLGPL-3.0
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI
coveralls test coverage No coveralls.
            [![Build Status](https://travis-ci.org/cirla/tulipy.svg?branch=master)](https://travis-ci.org/cirla/tulipy)
[![Build status](https://ci.appveyor.com/api/projects/status/g34af6ti605e2q4h?svg=true)](https://ci.appveyor.com/project/cirla/tulipy)

# tulipy

## Python bindings for [Tulip Indicators](https://tulipindicators.org/)

Tulipy requires [numpy](http://www.numpy.org/) as all inputs and outputs are numpy arrays (`dtype=np.float64`).

## Installation

You can install via `pip install tulipy`.
If a wheel is not available for your system, you will need to `pip install Cython numpy` to build from the source distribution.
When building from source on Windows, you will need the Microsoft Visual C++ Build Tools installed.

## Usage


```python
import numpy as np
import tulipy as ti
```


```python
ti.TI_VERSION
```




    '0.8.4'




```python
DATA = np.array([81.59, 81.06, 82.87, 83,    83.61,
                 83.15, 82.84, 83.99, 84.55, 84.36,
                 85.53, 86.54, 86.89, 87.77, 87.29])
```

Information about indicators are exposed as properties:


```python
def print_info(indicator):
    print("Type:", indicator.type)
    print("Full Name:", indicator.full_name)
    print("Inputs:", indicator.inputs)
    print("Options:", indicator.options)
    print("Outputs:", indicator.outputs)
```


```python
print_info(ti.sqrt)
```

    Type: simple
    Full Name: Vector Square Root
    Inputs: ['real']
    Options: []
    Outputs: ['sqrt']


Single outputs are returned directly. Indicators returning multiple outputs use
a tuple in the order indicated by the `outputs` property.


```python
ti.sqrt(DATA)
```




    array([ 9.03271831,  9.00333272,  9.10329611,  9.11043358,  9.14385039,
            9.11866218,  9.1016482 ,  9.16460583,  9.19510739,  9.18477   ,
            9.24824308,  9.30268778,  9.32148057,  9.36856446,  9.34291175])




```python
print_info(ti.sma)
```

    Type: overlay
    Full Name: Simple Moving Average
    Inputs: ['real']
    Options: ['period']
    Outputs: ['sma']



```python
ti.sma(DATA, period=5)
```




    array([ 82.426,  82.738,  83.094,  83.318,  83.628,  83.778,  84.254,
            84.994,  85.574,  86.218,  86.804])



Invalid options will throw an `InvalidOptionError`:


```python
try:
    ti.sma(DATA, period=-5)
except ti.InvalidOptionError:
    print("Invalid Option!")
```

    Invalid Option!



```python
print_info(ti.bbands)
```

    Type: overlay
    Full Name: Bollinger Bands
    Inputs: ['real']
    Options: ['period', 'stddev']
    Outputs: ['bbands_lower', 'bbands_middle', 'bbands_upper']



```python
ti.bbands(DATA, period=5, stddev=2)
```




    (array([ 80.53004219,  80.98714192,  82.53334324,  82.47198345,
             82.41775044,  82.43520292,  82.51133078,  83.14261781,
             83.53648779,  83.8703237 ,  85.28887096]),
     array([ 82.426,  82.738,  83.094,  83.318,  83.628,  83.778,  84.254,
             84.994,  85.574,  86.218,  86.804]),
     array([ 84.32195781,  84.48885808,  83.65465676,  84.16401655,
             84.83824956,  85.12079708,  85.99666922,  86.84538219,
             87.61151221,  88.5656763 ,  88.31912904]))



If inputs of differing sizes are provided, they are right-aligned and trimmed from the left:


```python
DATA2 = np.array([83.15, 82.84, 83.99, 84.55, 84.36])
```


```python
# 'high' trimmed to DATA[-5:] == array([ 85.53,  86.54,  86.89,  87.77,  87.29])
ti.aroonosc(high=DATA, low=DATA2, period=2)
```




    array([  50.,  100.,   50.])
            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/cirla/tulipy",
    "name": "tulipy",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "",
    "author": "https://github.com/cirla/tulipy/blob/master/AUTHORS",
    "author_email": "",
    "download_url": "https://files.pythonhosted.org/packages/2c/fc/685a3fe73a66ed35332058c2e22b2ed63b7725ec32817753f11c06f48792/tulipy-0.4.0.tar.gz",
    "platform": "",
    "description": "[![Build Status](https://travis-ci.org/cirla/tulipy.svg?branch=master)](https://travis-ci.org/cirla/tulipy)\n[![Build status](https://ci.appveyor.com/api/projects/status/g34af6ti605e2q4h?svg=true)](https://ci.appveyor.com/project/cirla/tulipy)\n\n# tulipy\n\n## Python bindings for [Tulip Indicators](https://tulipindicators.org/)\n\nTulipy requires [numpy](http://www.numpy.org/) as all inputs and outputs are numpy arrays (`dtype=np.float64`).\n\n## Installation\n\nYou can install via `pip install tulipy`.\nIf a wheel is not available for your system, you will need to `pip install Cython numpy` to build from the source distribution.\nWhen building from source on Windows, you will need the Microsoft Visual C++ Build Tools installed.\n\n## Usage\n\n\n```python\nimport numpy as np\nimport tulipy as ti\n```\n\n\n```python\nti.TI_VERSION\n```\n\n\n\n\n    '0.8.4'\n\n\n\n\n```python\nDATA = np.array([81.59, 81.06, 82.87, 83,    83.61,\n                 83.15, 82.84, 83.99, 84.55, 84.36,\n                 85.53, 86.54, 86.89, 87.77, 87.29])\n```\n\nInformation about indicators are exposed as properties:\n\n\n```python\ndef print_info(indicator):\n    print(\"Type:\", indicator.type)\n    print(\"Full Name:\", indicator.full_name)\n    print(\"Inputs:\", indicator.inputs)\n    print(\"Options:\", indicator.options)\n    print(\"Outputs:\", indicator.outputs)\n```\n\n\n```python\nprint_info(ti.sqrt)\n```\n\n    Type: simple\n    Full Name: Vector Square Root\n    Inputs: ['real']\n    Options: []\n    Outputs: ['sqrt']\n\n\nSingle outputs are returned directly. Indicators returning multiple outputs use\na tuple in the order indicated by the `outputs` property.\n\n\n```python\nti.sqrt(DATA)\n```\n\n\n\n\n    array([ 9.03271831,  9.00333272,  9.10329611,  9.11043358,  9.14385039,\n            9.11866218,  9.1016482 ,  9.16460583,  9.19510739,  9.18477   ,\n            9.24824308,  9.30268778,  9.32148057,  9.36856446,  9.34291175])\n\n\n\n\n```python\nprint_info(ti.sma)\n```\n\n    Type: overlay\n    Full Name: Simple Moving Average\n    Inputs: ['real']\n    Options: ['period']\n    Outputs: ['sma']\n\n\n\n```python\nti.sma(DATA, period=5)\n```\n\n\n\n\n    array([ 82.426,  82.738,  83.094,  83.318,  83.628,  83.778,  84.254,\n            84.994,  85.574,  86.218,  86.804])\n\n\n\nInvalid options will throw an `InvalidOptionError`:\n\n\n```python\ntry:\n    ti.sma(DATA, period=-5)\nexcept ti.InvalidOptionError:\n    print(\"Invalid Option!\")\n```\n\n    Invalid Option!\n\n\n\n```python\nprint_info(ti.bbands)\n```\n\n    Type: overlay\n    Full Name: Bollinger Bands\n    Inputs: ['real']\n    Options: ['period', 'stddev']\n    Outputs: ['bbands_lower', 'bbands_middle', 'bbands_upper']\n\n\n\n```python\nti.bbands(DATA, period=5, stddev=2)\n```\n\n\n\n\n    (array([ 80.53004219,  80.98714192,  82.53334324,  82.47198345,\n             82.41775044,  82.43520292,  82.51133078,  83.14261781,\n             83.53648779,  83.8703237 ,  85.28887096]),\n     array([ 82.426,  82.738,  83.094,  83.318,  83.628,  83.778,  84.254,\n             84.994,  85.574,  86.218,  86.804]),\n     array([ 84.32195781,  84.48885808,  83.65465676,  84.16401655,\n             84.83824956,  85.12079708,  85.99666922,  86.84538219,\n             87.61151221,  88.5656763 ,  88.31912904]))\n\n\n\nIf inputs of differing sizes are provided, they are right-aligned and trimmed from the left:\n\n\n```python\nDATA2 = np.array([83.15, 82.84, 83.99, 84.55, 84.36])\n```\n\n\n```python\n# 'high' trimmed to DATA[-5:] == array([ 85.53,  86.54,  86.89,  87.77,  87.29])\nti.aroonosc(high=DATA, low=DATA2, period=2)\n```\n\n\n\n\n    array([  50.,  100.,   50.])",
    "bugtrack_url": null,
    "license": "LGPL-3.0",
    "summary": "Financial Technical Analysis Indicator Library. Python bindings for https://github.com/TulipCharts/tulipindicators",
    "version": "0.4.0",
    "project_urls": {
        "Homepage": "https://github.com/cirla/tulipy"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "69ebbcc11e171eb73a80f55eea8199ac61186dab63e4c0062a99312a8992f9bc",
                "md5": "b2648450fa45b6d7f22bf42d8c4f1473",
                "sha256": "540704956b5b940a5f6306aa393a37536a6d7c3cbc07efe47512f3496e5203ab"
            },
            "downloads": -1,
            "filename": "tulipy-0.4.0-cp37-cp37m-win32.whl",
            "has_sig": false,
            "md5_digest": "b2648450fa45b6d7f22bf42d8c4f1473",
            "packagetype": "bdist_wheel",
            "python_version": "cp37",
            "requires_python": null,
            "size": 83384,
            "upload_time": "2019-04-11T03:40:50",
            "upload_time_iso_8601": "2019-04-11T03:40:50.356219Z",
            "url": "https://files.pythonhosted.org/packages/69/eb/bcc11e171eb73a80f55eea8199ac61186dab63e4c0062a99312a8992f9bc/tulipy-0.4.0-cp37-cp37m-win32.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "27bafe5e9c1de77c3bc6892d67f3f2ef3246604f66918a37c8f9ac416b662f5c",
                "md5": "18b1b545e3dbc763ac10243f4efa25c6",
                "sha256": "95542e40537afdd345d875baf37485eac993c6a819d00c51432e9de8df21eba8"
            },
            "downloads": -1,
            "filename": "tulipy-0.4.0-cp37-cp37m-win_amd64.whl",
            "has_sig": false,
            "md5_digest": "18b1b545e3dbc763ac10243f4efa25c6",
            "packagetype": "bdist_wheel",
            "python_version": "cp37",
            "requires_python": null,
            "size": 133157,
            "upload_time": "2019-04-11T03:40:51",
            "upload_time_iso_8601": "2019-04-11T03:40:51.664600Z",
            "url": "https://files.pythonhosted.org/packages/27/ba/fe5e9c1de77c3bc6892d67f3f2ef3246604f66918a37c8f9ac416b662f5c/tulipy-0.4.0-cp37-cp37m-win_amd64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "2cfc685a3fe73a66ed35332058c2e22b2ed63b7725ec32817753f11c06f48792",
                "md5": "f791897df22483e21c066228941324ad",
                "sha256": "fbc31727ef7657c93ad910bfdce65fecc6aaa7a5e961fe00240718e7a3fc79d8"
            },
            "downloads": -1,
            "filename": "tulipy-0.4.0.tar.gz",
            "has_sig": false,
            "md5_digest": "f791897df22483e21c066228941324ad",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 110271,
            "upload_time": "2019-04-11T03:37:12",
            "upload_time_iso_8601": "2019-04-11T03:37:12.125650Z",
            "url": "https://files.pythonhosted.org/packages/2c/fc/685a3fe73a66ed35332058c2e22b2ed63b7725ec32817753f11c06f48792/tulipy-0.4.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2019-04-11 03:37:12",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "cirla",
    "github_project": "tulipy",
    "travis_ci": true,
    "coveralls": false,
    "github_actions": false,
    "appveyor": true,
    "requirements": [],
    "lcname": "tulipy"
}
        
Elapsed time: 0.53468s