turning-points


Nameturning-points JSON
Version 0.0.5 PyPI version JSON
download
home_pageNone
SummaryA package to find turing points in tracks, andd plot
upload_time2024-04-05 05:01:05
maintainerNone
docs_urlNone
authorNone
requires_python>=3.8
licenseNone
keywords trajectory-analysis turning-points transition-probabilities data-science
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Turning Point Analyzer

## Overview
The Turning Point Analyzer is a Python package for analyzing turning points in trajectories and calculating transition probabilities.

## Installation
You can install the Turning Point Analyzer package using pip:
```bash
pip install turning-points
```

## Usage
To use the Turning Point Analyzer in your Python code, you can import it as follows:

```pytho
from turning_points import TurningPointAnalyzer
```

Analyzing Turning Points
```python
from turning_points import TurningPointAnalyzer

# Example trajectory data
trajectories = [
    [(0, 0), (1, 1), (2, 2), (3, 1), (4, 0)],  # Example trajectory 1
    [(0, 0), (1, -1), (2, -2), (3, -1), (4, 0)]  # Example trajectory 2
]

# Create a TurningPointAnalyzer instance
analyzer = TurningPointAnalyzer(trajectories)

# Plot transition directions
analyzer.plot_transition()

# Plot frequency distribution of time between turns
analyzer.plot_frequency()

# Get the probability of same turn direction
probability = analyzer.get_proba_same_turn()
print("Probability of same turn direction:", probability)

# Get the results
results = analyzer.get_results()
print("Results:", results)
```

## Testing
To run tests for the Turning Point Analyzer, you can use the following command:

```bash
pytest
```

## Contributing
Contributions are welcome! Please feel free to submit issues or pull requests.

## License
This project is licensed under the MIT License - see the LICENSE file for details.

## Citing
If you use this package for your publication, don't hesitate to cite it.
example provided in citations.md


## thanks for the RDP algorythm

The package use the [Ramer–Douglas–Peucker](http://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm) algorithm.
It was obtained from: https://github.com/fhirschmann/rdp

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "turning-points",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "trajectory-analysis, turning-points, transition-probabilities, data-science",
    "author": null,
    "author_email": "Charles Fosseprez <charles.fosseprez.me@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/07/7b/d9918ce6a30a2ac720072f3f13b6b5bd643564064159e8a505fdbeb91706/turning_points-0.0.5.tar.gz",
    "platform": null,
    "description": "# Turning Point Analyzer\n\n## Overview\nThe Turning Point Analyzer is a Python package for analyzing turning points in trajectories and calculating transition probabilities.\n\n## Installation\nYou can install the Turning Point Analyzer package using pip:\n```bash\npip install turning-points\n```\n\n## Usage\nTo use the Turning Point Analyzer in your Python code, you can import it as follows:\n\n```pytho\nfrom turning_points import TurningPointAnalyzer\n```\n\nAnalyzing Turning Points\n```python\nfrom turning_points import TurningPointAnalyzer\n\n# Example trajectory data\ntrajectories = [\n    [(0, 0), (1, 1), (2, 2), (3, 1), (4, 0)],  # Example trajectory 1\n    [(0, 0), (1, -1), (2, -2), (3, -1), (4, 0)]  # Example trajectory 2\n]\n\n# Create a TurningPointAnalyzer instance\nanalyzer = TurningPointAnalyzer(trajectories)\n\n# Plot transition directions\nanalyzer.plot_transition()\n\n# Plot frequency distribution of time between turns\nanalyzer.plot_frequency()\n\n# Get the probability of same turn direction\nprobability = analyzer.get_proba_same_turn()\nprint(\"Probability of same turn direction:\", probability)\n\n# Get the results\nresults = analyzer.get_results()\nprint(\"Results:\", results)\n```\n\n## Testing\nTo run tests for the Turning Point Analyzer, you can use the following command:\n\n```bash\npytest\n```\n\n## Contributing\nContributions are welcome! Please feel free to submit issues or pull requests.\n\n## License\nThis project is licensed under the MIT License - see the LICENSE file for details.\n\n## Citing\nIf you use this package for your publication, don't hesitate to cite it.\nexample provided in citations.md\n\n\n## thanks for the RDP algorythm\n\nThe package use the [Ramer\u2013Douglas\u2013Peucker](http://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm) algorithm.\nIt was obtained from: https://github.com/fhirschmann/rdp\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A package to find turing points in tracks, andd plot",
    "version": "0.0.5",
    "project_urls": {
        "Homepage": "https://github.com/lesptizami/turning_points",
        "Issues": "https://github.com/lesptizami/turning_points/issues"
    },
    "split_keywords": [
        "trajectory-analysis",
        " turning-points",
        " transition-probabilities",
        " data-science"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d44a3e9ceabb5b7dd48c6c2045ee318396dc3dcfd3b29fde3bd5b6ff095d0ae5",
                "md5": "245ed4dc6be1451880c831fd88592a0e",
                "sha256": "2bd1aed115e9fda7c38f427faaf5ad727bdbf29d8b3a10598c199d09f8606ea5"
            },
            "downloads": -1,
            "filename": "turning_points-0.0.5-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "245ed4dc6be1451880c831fd88592a0e",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 8089,
            "upload_time": "2024-04-05T05:01:04",
            "upload_time_iso_8601": "2024-04-05T05:01:04.310448Z",
            "url": "https://files.pythonhosted.org/packages/d4/4a/3e9ceabb5b7dd48c6c2045ee318396dc3dcfd3b29fde3bd5b6ff095d0ae5/turning_points-0.0.5-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "077bd9918ce6a30a2ac720072f3f13b6b5bd643564064159e8a505fdbeb91706",
                "md5": "c9d6691c40de866505911d92b30674e2",
                "sha256": "1bfc8d487d3d34c6f54d24657d9d2af3dbd89cf46bfdbf590bbb4e00d54f9121"
            },
            "downloads": -1,
            "filename": "turning_points-0.0.5.tar.gz",
            "has_sig": false,
            "md5_digest": "c9d6691c40de866505911d92b30674e2",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 8194,
            "upload_time": "2024-04-05T05:01:05",
            "upload_time_iso_8601": "2024-04-05T05:01:05.582835Z",
            "url": "https://files.pythonhosted.org/packages/07/7b/d9918ce6a30a2ac720072f3f13b6b5bd643564064159e8a505fdbeb91706/turning_points-0.0.5.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-04-05 05:01:05",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "lesptizami",
    "github_project": "turning_points",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [],
    "lcname": "turning-points"
}
        
Elapsed time: 0.20101s