twat-cache


Nametwat-cache JSON
Version 1.8.1 PyPI version JSON
download
home_pageNone
SummaryFlexible caching utilities for Python functions
upload_time2025-02-15 05:50:22
maintainerNone
docs_urlNone
authorNone
requires_python>=3.10
licenseNone
keywords cache decorator disk-cache joblib memory-cache
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # twat-cache

(work in progress)

A flexible caching utility package for Python functions that provides a unified interface for caching function results using various backends (memory, disk, SQL).

## Features

- Simple decorator interface for caching function results
- Multiple caching backends:
  - Memory-based LRU cache (always available)
  - SQL-based disk cache using `diskcache` (optional)
  - Efficient array caching using `joblib` (optional)
- Automatic cache directory management
- Type hints and modern Python features

## Installation

```bash
pip install twat-cache
```

## Usage

Basic usage with default memory caching:

```python
from twat_cache import ucache

@ucache()
def expensive_computation(x):
    # Results will be cached automatically
    return x * x

result = expensive_computation(42)  # Computed
result = expensive_computation(42)  # Retrieved from cache
```

Using SQL-based disk cache:

```python
@ucache(folder_name="my_cache", use_sql=True)
def process_data(data):
    # Results will be cached to disk using SQL backend
    return data.process()
```

Using joblib for efficient array caching:

```python
import numpy as np
from twat_cache import ucache

@ucache(folder_name="array_cache")
def matrix_operation(arr):
    # Large array operations will be efficiently cached
    return np.dot(arr, arr.T)
```

## Cache Location

The package automatically manages cache directories using the following strategy:

1. If `platformdirs` is available, uses the platform-specific user cache directory
2. Otherwise, falls back to `~/.cache`

You can get the cache path programmatically:

```python
from twat_cache import get_cache_path

cache_dir = get_cache_path("my_cache")
```

## Dependencies

- Required: None (basic memory caching works without dependencies)
- Optional:
  - `platformdirs`: For platform-specific cache directories
  - `diskcache`: For SQL-based disk caching
  - `joblib`: For efficient array caching

## License

MIT License  
.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "twat-cache",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": null,
    "keywords": "cache, decorator, disk-cache, joblib, memory-cache",
    "author": null,
    "author_email": "Adam Twardoch <adam+github@twardoch.com>",
    "download_url": "https://files.pythonhosted.org/packages/1e/28/51e865e486503f67924cb9936d9183e677c20640ee07daf08789d4c69116/twat_cache-1.8.1.tar.gz",
    "platform": null,
    "description": "# twat-cache\n\n(work in progress)\n\nA flexible caching utility package for Python functions that provides a unified interface for caching function results using various backends (memory, disk, SQL).\n\n## Features\n\n- Simple decorator interface for caching function results\n- Multiple caching backends:\n  - Memory-based LRU cache (always available)\n  - SQL-based disk cache using `diskcache` (optional)\n  - Efficient array caching using `joblib` (optional)\n- Automatic cache directory management\n- Type hints and modern Python features\n\n## Installation\n\n```bash\npip install twat-cache\n```\n\n## Usage\n\nBasic usage with default memory caching:\n\n```python\nfrom twat_cache import ucache\n\n@ucache()\ndef expensive_computation(x):\n    # Results will be cached automatically\n    return x * x\n\nresult = expensive_computation(42)  # Computed\nresult = expensive_computation(42)  # Retrieved from cache\n```\n\nUsing SQL-based disk cache:\n\n```python\n@ucache(folder_name=\"my_cache\", use_sql=True)\ndef process_data(data):\n    # Results will be cached to disk using SQL backend\n    return data.process()\n```\n\nUsing joblib for efficient array caching:\n\n```python\nimport numpy as np\nfrom twat_cache import ucache\n\n@ucache(folder_name=\"array_cache\")\ndef matrix_operation(arr):\n    # Large array operations will be efficiently cached\n    return np.dot(arr, arr.T)\n```\n\n## Cache Location\n\nThe package automatically manages cache directories using the following strategy:\n\n1. If `platformdirs` is available, uses the platform-specific user cache directory\n2. Otherwise, falls back to `~/.cache`\n\nYou can get the cache path programmatically:\n\n```python\nfrom twat_cache import get_cache_path\n\ncache_dir = get_cache_path(\"my_cache\")\n```\n\n## Dependencies\n\n- Required: None (basic memory caching works without dependencies)\n- Optional:\n  - `platformdirs`: For platform-specific cache directories\n  - `diskcache`: For SQL-based disk caching\n  - `joblib`: For efficient array caching\n\n## License\n\nMIT License  \n.\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Flexible caching utilities for Python functions",
    "version": "1.8.1",
    "project_urls": {
        "Documentation": "https://github.com/twardoch/twat-cache#readme",
        "Issues": "https://github.com/twardoch/twat-cache/issues",
        "Source": "https://github.com/twardoch/twat-cache"
    },
    "split_keywords": [
        "cache",
        " decorator",
        " disk-cache",
        " joblib",
        " memory-cache"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "0750d40d996cf9a6c683377ad91289fd97dcf0c34df5c25bad72c1f0cb033dc4",
                "md5": "245473e7538372d13fbef261aac90784",
                "sha256": "c3a2f79f53265e94966a5e9683a3a273ff976a737a084b7670ca593302648a66"
            },
            "downloads": -1,
            "filename": "twat_cache-1.8.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "245473e7538372d13fbef261aac90784",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 10303,
            "upload_time": "2025-02-15T05:50:16",
            "upload_time_iso_8601": "2025-02-15T05:50:16.711960Z",
            "url": "https://files.pythonhosted.org/packages/07/50/d40d996cf9a6c683377ad91289fd97dcf0c34df5c25bad72c1f0cb033dc4/twat_cache-1.8.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "1e2851e865e486503f67924cb9936d9183e677c20640ee07daf08789d4c69116",
                "md5": "91ccad5f1a7b4d3428ed310443e1f943",
                "sha256": "239b7cc4e1e8fd512cd720c0f62395121999e6e36b358ae5ff18410b4ccb973c"
            },
            "downloads": -1,
            "filename": "twat_cache-1.8.1.tar.gz",
            "has_sig": false,
            "md5_digest": "91ccad5f1a7b4d3428ed310443e1f943",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 10868,
            "upload_time": "2025-02-15T05:50:22",
            "upload_time_iso_8601": "2025-02-15T05:50:22.388991Z",
            "url": "https://files.pythonhosted.org/packages/1e/28/51e865e486503f67924cb9936d9183e677c20640ee07daf08789d4c69116/twat_cache-1.8.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-02-15 05:50:22",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "twardoch",
    "github_project": "twat-cache#readme",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "twat-cache"
}
        
Elapsed time: 0.43637s