Name | twitter-langchain JSON |
Version |
0.0.11
JSON |
| download |
home_page | None |
Summary | Twitter Langchain Toolkit |
upload_time | 2025-01-24 23:00:04 |
maintainer | None |
docs_url | None |
author | John Peterson |
requires_python | <4.0,>=3.10 |
license | Apache-2.0 |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# Twitter (X) Langchain Toolkit
Twitter integration with Langchain to enable agentic workflows using the core primitives defined in `cdp-agentkit-core`.
This toolkit contains tools that enable an LLM agent to interact with [Twitter](https://developer.x.com/en/docs/x-api). The toolkit provides a wrapper around the Twitter (X) API, allowing agents to perform social operations like posting text.
## Setup
### Prerequisites
- [OpenAI API Key](https://platform.openai.com/api-keys)
- [Twitter (X) App Developer Keys](https://developer.x.com/en/portal/dashboard)
- Python 3.10 or higher
### Installation
```bash
pip install twitter-langchain
```
### Environment Setup
Set the following environment variables:
```bash
export OPENAI_API_KEY=<your-openai-api-key>
export TWITTER_API_KEY=<your-api-key>
export TWITTER_API_SECRET=<your-api-secret>
export TWITTER_ACCESS_TOKEN=<your-access-token>
export TWITTER_ACCESS_TOKEN_SECRET=<your-access-token-secret>
export TWITTER_BEARER_TOKEN=<your-bearer-token>
```
## Usage
### Basic Setup
```python
from twitter_langchain import (
TwitterApiWrapper,
TwitterToolkit
)
# Initialize TwitterApiwrapper
twitter_api_wrapper = TwitterApiWrapper()
# Create TwitterToolkit from the api wrapper
twitter_toolkit = TwitterToolkit.from_twitter_api_wrapper(twitter_api_wrapper)
```
View available tools:
```python
tools = twitter_toolkit.get_tools()
for tool in tools:
print(tool.name)
```
### Available Tools
The toolkit provides the following tools:
1. **account_details** - Get the authenticated account details
2. **account_mentions** - Get mentions for the account
3. **post_tweet** - Post a tweet to the account
3. **post_tweet_reply** - Post a reply to a tweet on Twitter
### Using with an Agent
```python
import uuid
from langchain_openai import ChatOpenAI
from langchain_core.messages import HumanMessage
from langgraph.prebuilt import create_react_agent
llm = ChatOpenAI(model="gpt-4o-mini")
# Create agent
agent_executor = create_react_agent(llm, tools)
# Example - post tweet
events = agent_executor.stream(
{
"messages": [
HumanMessage(content=f"Please post 'hello, world! {uuid.uuid4().hex}' to twitter"),
],
},
stream_mode="values",
)
for event in events:
event["messages"][-1].pretty_print()
```
Expected output:
```
================================ Human Message =================================
Please post 'hello, world! c4b8e3744c2e4345be9e0622b4c0a8aa' to twitter
================================== Ai Message ==================================
Tool Calls:
post_tweet (call_xVx4BMCSlCmCcbEQG1yyebbq)
Call ID: call_xVx4BMCSlCmCcbEQG1yyebbq
Args:
tweet: hello, world! c4b8e3744c2e4345be9e0622b4c0a8aa
================================= Tool Message =================================
Name: post_tweet
Successfully posted!
================================== Ai Message ==================================
The message "hello, world! c4b8e3744c2e4345be9e0622b4c0a8aa" has been successfully posted to Twitter!
```
## Examples
Check out [twitter-langchain/examples](../examples) for inspiration and help getting started!
- [Chatbot Python](../examples/chatbot-python/README.md): Simple example of a Python Chatbot that can interact on Twitter (X), using OpenAI.
## Contributing
See [CONTRIBUTING.md](../../CONTRIBUTING.md) for detailed setup instructions and contribution guidelines.
Raw data
{
"_id": null,
"home_page": null,
"name": "twitter-langchain",
"maintainer": null,
"docs_url": null,
"requires_python": "<4.0,>=3.10",
"maintainer_email": null,
"keywords": null,
"author": "John Peterson",
"author_email": "john.peterson@coinbase.com",
"download_url": "https://files.pythonhosted.org/packages/88/1d/8efcd67a20861c2f3860f1bd6a3f97b80f1701e6b501d4f1b6553904475f/twitter_langchain-0.0.11.tar.gz",
"platform": null,
"description": "# Twitter (X) Langchain Toolkit\nTwitter integration with Langchain to enable agentic workflows using the core primitives defined in `cdp-agentkit-core`.\n\nThis toolkit contains tools that enable an LLM agent to interact with [Twitter](https://developer.x.com/en/docs/x-api). The toolkit provides a wrapper around the Twitter (X) API, allowing agents to perform social operations like posting text.\n\n## Setup\n\n### Prerequisites\n\n- [OpenAI API Key](https://platform.openai.com/api-keys)\n- [Twitter (X) App Developer Keys](https://developer.x.com/en/portal/dashboard)\n- Python 3.10 or higher\n\n### Installation\n\n```bash\npip install twitter-langchain\n```\n\n### Environment Setup\n\nSet the following environment variables:\n\n```bash\nexport OPENAI_API_KEY=<your-openai-api-key>\nexport TWITTER_API_KEY=<your-api-key>\nexport TWITTER_API_SECRET=<your-api-secret>\nexport TWITTER_ACCESS_TOKEN=<your-access-token>\nexport TWITTER_ACCESS_TOKEN_SECRET=<your-access-token-secret>\nexport TWITTER_BEARER_TOKEN=<your-bearer-token>\n```\n\n## Usage\n\n### Basic Setup\n\n```python\nfrom twitter_langchain import (\n TwitterApiWrapper,\n TwitterToolkit\n)\n\n# Initialize TwitterApiwrapper\ntwitter_api_wrapper = TwitterApiWrapper()\n\n# Create TwitterToolkit from the api wrapper\ntwitter_toolkit = TwitterToolkit.from_twitter_api_wrapper(twitter_api_wrapper)\n```\n\nView available tools:\n```python\ntools = twitter_toolkit.get_tools()\nfor tool in tools:\n print(tool.name)\n```\n\n### Available Tools\n\nThe toolkit provides the following tools:\n\n1. **account_details** - Get the authenticated account details\n2. **account_mentions** - Get mentions for the account\n3. **post_tweet** - Post a tweet to the account\n3. **post_tweet_reply** - Post a reply to a tweet on Twitter\n\n### Using with an Agent\n\n```python\nimport uuid\n\nfrom langchain_openai import ChatOpenAI\nfrom langchain_core.messages import HumanMessage\nfrom langgraph.prebuilt import create_react_agent\n\nllm = ChatOpenAI(model=\"gpt-4o-mini\")\n\n# Create agent\nagent_executor = create_react_agent(llm, tools)\n\n# Example - post tweet\nevents = agent_executor.stream(\n {\n \"messages\": [\n HumanMessage(content=f\"Please post 'hello, world! {uuid.uuid4().hex}' to twitter\"),\n ],\n },\n stream_mode=\"values\",\n)\n\nfor event in events:\n event[\"messages\"][-1].pretty_print()\n```\n\nExpected output:\n```\n================================ Human Message =================================\nPlease post 'hello, world! c4b8e3744c2e4345be9e0622b4c0a8aa' to twitter\n================================== Ai Message ==================================\nTool Calls:\n post_tweet (call_xVx4BMCSlCmCcbEQG1yyebbq)\n Call ID: call_xVx4BMCSlCmCcbEQG1yyebbq\n Args:\n tweet: hello, world! c4b8e3744c2e4345be9e0622b4c0a8aa\n================================= Tool Message =================================\nName: post_tweet\nSuccessfully posted!\n================================== Ai Message ==================================\nThe message \"hello, world! c4b8e3744c2e4345be9e0622b4c0a8aa\" has been successfully posted to Twitter!\n```\n\n## Examples\n\nCheck out [twitter-langchain/examples](../examples) for inspiration and help getting started!\n- [Chatbot Python](../examples/chatbot-python/README.md): Simple example of a Python Chatbot that can interact on Twitter (X), using OpenAI.\n\n## Contributing\n\nSee [CONTRIBUTING.md](../../CONTRIBUTING.md) for detailed setup instructions and contribution guidelines.\n\n",
"bugtrack_url": null,
"license": "Apache-2.0",
"summary": "Twitter Langchain Toolkit",
"version": "0.0.11",
"project_urls": null,
"split_keywords": [],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "7ad116c0d5d07718a96954588cfc9cf6734472eb55c212b5199b6ad84b95ad8a",
"md5": "0ac152b23ede14bbb1aff2c8ac35494c",
"sha256": "42657011c4752066862bf4de2bd36e69913654ea02bab6d9f995ce40793db461"
},
"downloads": -1,
"filename": "twitter_langchain-0.0.11-py3-none-any.whl",
"has_sig": false,
"md5_digest": "0ac152b23ede14bbb1aff2c8ac35494c",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0,>=3.10",
"size": 6252,
"upload_time": "2025-01-24T23:00:03",
"upload_time_iso_8601": "2025-01-24T23:00:03.453473Z",
"url": "https://files.pythonhosted.org/packages/7a/d1/16c0d5d07718a96954588cfc9cf6734472eb55c212b5199b6ad84b95ad8a/twitter_langchain-0.0.11-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "881d8efcd67a20861c2f3860f1bd6a3f97b80f1701e6b501d4f1b6553904475f",
"md5": "7dc9b66475113d1fd9cabdd000b1780f",
"sha256": "34445bbc0bcd2684197b917aff8e5e5f3db164d38e754fb67f6dc2359ca194c3"
},
"downloads": -1,
"filename": "twitter_langchain-0.0.11.tar.gz",
"has_sig": false,
"md5_digest": "7dc9b66475113d1fd9cabdd000b1780f",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0,>=3.10",
"size": 4782,
"upload_time": "2025-01-24T23:00:04",
"upload_time_iso_8601": "2025-01-24T23:00:04.401541Z",
"url": "https://files.pythonhosted.org/packages/88/1d/8efcd67a20861c2f3860f1bd6a3f97b80f1701e6b501d4f1b6553904475f/twitter_langchain-0.0.11.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-01-24 23:00:04",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "twitter-langchain"
}