Name | txtdata JSON |
Version |
0.1.2
JSON |
| download |
home_page | |
Summary | |
upload_time | 2024-01-26 15:17:13 |
maintainer | |
docs_url | None |
author | renanmoretto |
requires_python | >=3.10,<4.0 |
license | |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# Easy and light manager for basic text data.
TxtData is a Python library designed for basic handling of data in .txt files. This lightweight library, with less than 400 lines of code, offers an easy-to-use API and includes comprehensive, well-written tests.
- Simple and intuitive handling of .txt data.
- Lightweight design for efficient performance.
- Extensive testing ensuring reliability.
## Installation
```
pip install txtdata
```
## Examples
```python
from txtdata import TxtData
# Creating an empty TxtData instance
txt = TxtData()
print(txt.empty) # Output: True
# Creating with a simple dictionary.
txt = TxtData({'A': [1,2,3], 'B': ['x','y','z']})
print(txt)
# Output: [{'A': 1, 'B': 'x'}, {'A': 2, 'B': 'y'}, {'A': 3, 'B': 'z'}]
# Inserting data
txt = TxtData()
txt.insert({'A': 123, 'B': 'zzz'}) # single data by single dict
txt.insert(A=182, C='asdf') # single data by keyword
txt.insert([{'A': None}, {'B': 'zzz', 'C': 'yes'}]) # multiple data by list of dicts
txt.insert({'A': [1, 3], 'B': ['yyy', 'www']}) # multiple data by dict of lists
print(txt)
# Output: [
# {'A': 123, 'B': 'zzz', 'C': None},
# {'A': 182, 'B': None, 'C': 'asdf'},
# {'A': None, 'B': None, 'C': None},
# {'A': None, 'B': 'zzz', 'C': 'yes'},
# {'A': 1, 'B': 'yyy', 'C': None},
# {'A': 3, 'B': 'www', 'C': None}
# ]
# Filtering data
filtered_txt = txt.filter(A=182)
print(len(filtered_txt)) # Output: 1 (based on data above)
# Delete
txt.delete(B=None) # Deletes all data with B equals to None
# Saving
txt.save('data.txt', delimiter=';')
# txt file:
# A;B;C
# 123;zzz;
# 182;;asdf
# ;;
# ;zzz;yes
# 1;yyy;
# 3;www;
```
Raw data
{
"_id": null,
"home_page": "",
"name": "txtdata",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.10,<4.0",
"maintainer_email": "",
"keywords": "",
"author": "renanmoretto",
"author_email": "himynameisrenan@outlook.com",
"download_url": "https://files.pythonhosted.org/packages/a5/29/f9eca4f82043917fb328956ead1fd2f9b40deff95da6dfee49c0a9cf0ac7/txtdata-0.1.2.tar.gz",
"platform": null,
"description": "# Easy and light manager for basic text data.\n\nTxtData is a Python library designed for basic handling of data in .txt files. This lightweight library, with less than 400 lines of code, offers an easy-to-use API and includes comprehensive, well-written tests.\n\n\n- Simple and intuitive handling of .txt data.\n- Lightweight design for efficient performance.\n- Extensive testing ensuring reliability.\n\n## Installation\n```\npip install txtdata\n```\n\n## Examples\n```python\nfrom txtdata import TxtData\n\n# Creating an empty TxtData instance\ntxt = TxtData()\nprint(txt.empty) # Output: True\n\n# Creating with a simple dictionary.\ntxt = TxtData({'A': [1,2,3], 'B': ['x','y','z']})\nprint(txt) \n# Output: [{'A': 1, 'B': 'x'}, {'A': 2, 'B': 'y'}, {'A': 3, 'B': 'z'}]\n\n# Inserting data\ntxt = TxtData()\ntxt.insert({'A': 123, 'B': 'zzz'}) # single data by single dict\ntxt.insert(A=182, C='asdf') # single data by keyword\ntxt.insert([{'A': None}, {'B': 'zzz', 'C': 'yes'}]) # multiple data by list of dicts\ntxt.insert({'A': [1, 3], 'B': ['yyy', 'www']}) # multiple data by dict of lists\nprint(txt)\n# Output: [\n# {'A': 123, 'B': 'zzz', 'C': None},\n# {'A': 182, 'B': None, 'C': 'asdf'},\n# {'A': None, 'B': None, 'C': None},\n# {'A': None, 'B': 'zzz', 'C': 'yes'},\n# {'A': 1, 'B': 'yyy', 'C': None},\n# {'A': 3, 'B': 'www', 'C': None}\n# ]\n\n# Filtering data\nfiltered_txt = txt.filter(A=182)\nprint(len(filtered_txt)) # Output: 1 (based on data above)\n\n# Delete\ntxt.delete(B=None) # Deletes all data with B equals to None\n\n# Saving\ntxt.save('data.txt', delimiter=';')\n# txt file:\n# A;B;C\n# 123;zzz;\n# 182;;asdf\n# ;;\n# ;zzz;yes\n# 1;yyy;\n# 3;www;\n\n\n```",
"bugtrack_url": null,
"license": "",
"summary": "",
"version": "0.1.2",
"project_urls": null,
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "7c80fc4e39bc5fbaea54fb7d17a65a0348afbbe88610ce9b46a2ca7001611710",
"md5": "6e684c98f1af0c3bcd07afd3b687d3fe",
"sha256": "b7160cfe8c732e6f428e4583cf491161056853b23c58add830eb472d2b7dc778"
},
"downloads": -1,
"filename": "txtdata-0.1.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "6e684c98f1af0c3bcd07afd3b687d3fe",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.10,<4.0",
"size": 5531,
"upload_time": "2024-01-26T15:17:11",
"upload_time_iso_8601": "2024-01-26T15:17:11.694812Z",
"url": "https://files.pythonhosted.org/packages/7c/80/fc4e39bc5fbaea54fb7d17a65a0348afbbe88610ce9b46a2ca7001611710/txtdata-0.1.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "a529f9eca4f82043917fb328956ead1fd2f9b40deff95da6dfee49c0a9cf0ac7",
"md5": "8b757c5d8a8b39c06388611f38e85296",
"sha256": "3329c46232b490d840a69a02b3ca208f36f2f1709a8548a79291de2d3be81c29"
},
"downloads": -1,
"filename": "txtdata-0.1.2.tar.gz",
"has_sig": false,
"md5_digest": "8b757c5d8a8b39c06388611f38e85296",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.10,<4.0",
"size": 5051,
"upload_time": "2024-01-26T15:17:13",
"upload_time_iso_8601": "2024-01-26T15:17:13.316602Z",
"url": "https://files.pythonhosted.org/packages/a5/29/f9eca4f82043917fb328956ead1fd2f9b40deff95da6dfee49c0a9cf0ac7/txtdata-0.1.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-01-26 15:17:13",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "txtdata"
}