type3detect


Nametype3detect JSON
Version 0.0.3 PyPI version JSON
download
home_pagehttps://github.com/peijin94/type3detect
Summarytools to process the lofar solar data
upload_time2023-05-29 13:30:50
maintainer
docs_urlNone
authorPeijin
requires_python
licenseMIT
keywords lofar solar radio
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Type III Radio Burst Automatic Recognition Algorithm

The automatic recognition of the Type III radio burst using Hough Transform.

## Installation

### Python

install from pypi
```bash
pip install type3detect
```

install from git
```bash
git clone https://github.com/peijin94/type3detect.git
cd src/python
python pip install .
```

### Matlab:
```bash
git clone https://github.com/peijin94/type3detect.git
cd src/matlab
```

## Example 

Read fits file and detect type III radio bursts in dynamic spectrum.

```python
import matplotlib.dates as mdates
import matplotlib.pyplot as plt
import numpy as np

from type3detect import detectRadioburst as drb
from type3detect import radioTools as rt

fname  = './LOFAR_20220701_070000_LBA_OUTER_S0.fits'

# preprocess
(dyspec,t_fits,f_fits,hdu) = drb.read_fits(fname) # read LOFAR dynspec fits
(dyspec,f_fits) = drb.cut_low(dyspec,f_fits,f_low_cut_val=30) # remove below freq (RFI)
(data_fits_new,data_fits_new_smooth) = drb.preproc(dyspec,gauss_sigma=1.5)

# binarization
bmap = drb.binarization(data_fits_new,N_order=6,peak_r=1.002)

# detect verticle features
lines = drb.hough_detect(bmap,dyspec,threshold=40,line_gap=10,line_length=30,
            theta=np.linspace(np.pi/2-np.pi/8,np.pi/2-1/180*np.pi,300))
line_sets = drb.line_grouping(lines)

# get electron beam information from radio bursts
(v_beam, f_range_burst, t_range_burst, model_curve_set,
     t_set_arr_set,f_set_arr_set,t_model_arr,f_model_arr
    )= drb.get_info_from_linegroup(line_sets,t_fits,f_fits)

# detailed demo in ./type3detect_demo.ipynb
```

Example: Implementation with for LOFAR dynamic spectrum.

Demo Notebook: [type3detect_demo.ipynb](https://github.com/peijin94/type3detect/blob/master/type3detect_demo.ipynb)

![img](https://github.com/peijin94/type3detect/raw/master/img/LOFAR_20220413_135000_LBA_OUTER.fits.jpg)


### Binarization

Use several ways to transform the flux intensity data into binary. ([LocalMax(matlab)](src/matlab/get_local_max_map.m)) ([binarization(Python)](src/python/src/detectRadioBurst.py))


### Active-Contour method for Backbone

The Active Contour Method for the backbone of the radio burst (**ACBone**)

Take the result of the Hough transform as a initail position and iteratively move the line to find the backbone position. The demo code : ([ACBone-Matlab](src/matlab/active_contour.m), [ACBone-Python](src/python/type3detect/ACBone.py))

![img](https://github.com/peijin94/type3detect/raw/master/img/activecontour.GIF)

Eventually, we can obtain the centerline of a Type III radio burst.


## Citation

Make sure to cite the paper if you use the idea or code in this repo: [A type III radio burst automatic analysis system and statistic results for a half solar cycle with Nançay Decameter Array data](https://www.aanda.org/component/article?access=doi&doi=10.1051/0004-6361/201833260#R16) Peijin Zhang. A&A 2018.10

bibtex:
```
@article{zhang2018type,
  title={A type III radio burst automatic analysis system and statistic results for a half solar cycle with Nan{\c{c}}ay Decameter Array data},
  author={Zhang, PJ and Wang, Chuan Bing and Ye, Lin},
  journal={Astronomy \& Astrophysics},
  volume={618},
  pages={A165},
  year={2018},
  publisher={EDP Sciences}
}
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/peijin94/type3detect",
    "name": "type3detect",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "LOFAR,Solar,radio",
    "author": "Peijin",
    "author_email": "pjer1316@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/9b/55/1e7ef84441ec8b7693933e5a5e05abb7ad13ac87096d453008f3d36f259b/type3detect-0.0.3.tar.gz",
    "platform": null,
    "description": "# Type III Radio Burst Automatic Recognition Algorithm\n\nThe automatic recognition of the Type III radio burst using Hough Transform.\n\n## Installation\n\n### Python\n\ninstall from pypi\n```bash\npip install type3detect\n```\n\ninstall from git\n```bash\ngit clone https://github.com/peijin94/type3detect.git\ncd src/python\npython pip install .\n```\n\n### Matlab:\n```bash\ngit clone https://github.com/peijin94/type3detect.git\ncd src/matlab\n```\n\n## Example \n\nRead fits file and detect type III radio bursts in dynamic spectrum.\n\n```python\nimport matplotlib.dates as mdates\nimport matplotlib.pyplot as plt\nimport numpy as np\n\nfrom type3detect import detectRadioburst as drb\nfrom type3detect import radioTools as rt\n\nfname  = './LOFAR_20220701_070000_LBA_OUTER_S0.fits'\n\n# preprocess\n(dyspec,t_fits,f_fits,hdu) = drb.read_fits(fname) # read LOFAR dynspec fits\n(dyspec,f_fits) = drb.cut_low(dyspec,f_fits,f_low_cut_val=30) # remove below freq (RFI)\n(data_fits_new,data_fits_new_smooth) = drb.preproc(dyspec,gauss_sigma=1.5)\n\n# binarization\nbmap = drb.binarization(data_fits_new,N_order=6,peak_r=1.002)\n\n# detect verticle features\nlines = drb.hough_detect(bmap,dyspec,threshold=40,line_gap=10,line_length=30,\n            theta=np.linspace(np.pi/2-np.pi/8,np.pi/2-1/180*np.pi,300))\nline_sets = drb.line_grouping(lines)\n\n# get electron beam information from radio bursts\n(v_beam, f_range_burst, t_range_burst, model_curve_set,\n     t_set_arr_set,f_set_arr_set,t_model_arr,f_model_arr\n    )= drb.get_info_from_linegroup(line_sets,t_fits,f_fits)\n\n# detailed demo in ./type3detect_demo.ipynb\n```\n\nExample: Implementation with for LOFAR dynamic spectrum.\n\nDemo Notebook: [type3detect_demo.ipynb](https://github.com/peijin94/type3detect/blob/master/type3detect_demo.ipynb)\n\n![img](https://github.com/peijin94/type3detect/raw/master/img/LOFAR_20220413_135000_LBA_OUTER.fits.jpg)\n\n\n### Binarization\n\nUse several ways to transform the flux intensity data into binary. ([LocalMax(matlab)](src/matlab/get_local_max_map.m)) ([binarization(Python)](src/python/src/detectRadioBurst.py))\n\n\n### Active-Contour method for Backbone\n\nThe Active Contour Method for the backbone of the radio burst (**ACBone**)\n\nTake the result of the Hough transform as a initail position and iteratively move the line to find the backbone position. The demo code : ([ACBone-Matlab](src/matlab/active_contour.m), [ACBone-Python](src/python/type3detect/ACBone.py))\n\n![img](https://github.com/peijin94/type3detect/raw/master/img/activecontour.GIF)\n\nEventually, we can obtain the centerline of a Type III radio burst.\n\n\n## Citation\n\nMake sure to cite the paper if you use the idea or code in this repo: [A type III radio burst automatic analysis system and statistic results for a half solar cycle with Nan\u00e7ay Decameter Array data](https://www.aanda.org/component/article?access=doi&doi=10.1051/0004-6361/201833260#R16) Peijin Zhang. A&A 2018.10\n\nbibtex:\n```\n@article{zhang2018type,\n  title={A type III radio burst automatic analysis system and statistic results for a half solar cycle with Nan{\\c{c}}ay Decameter Array data},\n  author={Zhang, PJ and Wang, Chuan Bing and Ye, Lin},\n  journal={Astronomy \\& Astrophysics},\n  volume={618},\n  pages={A165},\n  year={2018},\n  publisher={EDP Sciences}\n}\n```\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "tools to process the lofar solar data",
    "version": "0.0.3",
    "project_urls": {
        "Download": "https://github.com/peijin94/type3detect/archive/refs/heads/master.zip",
        "Homepage": "https://github.com/peijin94/type3detect"
    },
    "split_keywords": [
        "lofar",
        "solar",
        "radio"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "9b551e7ef84441ec8b7693933e5a5e05abb7ad13ac87096d453008f3d36f259b",
                "md5": "564664823547663788b51be735ea8bc7",
                "sha256": "62c2eed2fa2855837ab80ddf225864b57b29299ff0f28bdf58ce00bd4322dbe4"
            },
            "downloads": -1,
            "filename": "type3detect-0.0.3.tar.gz",
            "has_sig": false,
            "md5_digest": "564664823547663788b51be735ea8bc7",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 7180,
            "upload_time": "2023-05-29T13:30:50",
            "upload_time_iso_8601": "2023-05-29T13:30:50.070322Z",
            "url": "https://files.pythonhosted.org/packages/9b/55/1e7ef84441ec8b7693933e5a5e05abb7ad13ac87096d453008f3d36f259b/type3detect-0.0.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-05-29 13:30:50",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "peijin94",
    "github_project": "type3detect",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "type3detect"
}
        
Elapsed time: 0.08850s