# ultrafastgoertzel Python Bindings
Ultra-fast Goertzel algorithm implementation with SIMD optimization for Python.
## Usage
```python
import ultrafastgoertzel as ufg
import math
# Generate a test signal (sine wave at frequency 0.1)
signal = [math.sin(2 * math.pi * 0.1 * i) for i in range(1000)]
# Analyze a single frequency
magnitude = ufg.goertzel(signal, 0.1)
print(f"Magnitude at 0.1: {magnitude:.4f}")
# Analyze multiple frequencies efficiently (recommended)
frequencies = [0.1, 0.2, 0.3]
magnitudes = ufg.goertzel_batch(signal, frequencies)
for freq, mag in zip(frequencies, magnitudes):
print(f"Frequency {freq}: {mag:.4f}")
```
## Frequency Normalization
Frequencies are normalized, where:
- 0.0 = DC (0 Hz)
- 0.5 = Nyquist frequency (half the sampling rate)
For example, if your sampling rate is 1000 Hz:
- 0.1 represents 100 Hz
- 0.25 represents 250 Hz
- 0.5 represents 500 Hz (Nyquist)
## Performance
This implementation uses SIMD instructions for optimal performance. The `goertzel_batch` function is particularly efficient when analyzing multiple frequencies on the same signal, as it can process multiple frequencies in parallel.
## License
WTFPL License.
Raw data
{
"_id": null,
"home_page": null,
"name": "ultrafastgoertzel",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": "goertzel, rust, pyo3, signal-processing, fft, dsp",
"author": null,
"author_email": "Joseph Chotard <joseph@chotard.com>",
"download_url": "https://files.pythonhosted.org/packages/fa/4d/edb1c62aeebe7e5f08ca2eb7f8728ad565ab456bafb69c078f8b4233bbe3/ultrafastgoertzel-0.1.0.tar.gz",
"platform": null,
"description": "# ultrafastgoertzel Python Bindings\n\nUltra-fast Goertzel algorithm implementation with SIMD optimization for Python.\n## Usage\n\n```python\nimport ultrafastgoertzel as ufg\nimport math\n\n# Generate a test signal (sine wave at frequency 0.1)\nsignal = [math.sin(2 * math.pi * 0.1 * i) for i in range(1000)]\n\n# Analyze a single frequency\nmagnitude = ufg.goertzel(signal, 0.1)\nprint(f\"Magnitude at 0.1: {magnitude:.4f}\")\n\n# Analyze multiple frequencies efficiently (recommended)\nfrequencies = [0.1, 0.2, 0.3]\nmagnitudes = ufg.goertzel_batch(signal, frequencies)\nfor freq, mag in zip(frequencies, magnitudes):\n print(f\"Frequency {freq}: {mag:.4f}\")\n```\n\n## Frequency Normalization\n\nFrequencies are normalized, where:\n- 0.0 = DC (0 Hz)\n- 0.5 = Nyquist frequency (half the sampling rate)\n\nFor example, if your sampling rate is 1000 Hz:\n- 0.1 represents 100 Hz\n- 0.25 represents 250 Hz\n- 0.5 represents 500 Hz (Nyquist)\n\n## Performance\n\nThis implementation uses SIMD instructions for optimal performance. The `goertzel_batch` function is particularly efficient when analyzing multiple frequencies on the same signal, as it can process multiple frequencies in parallel.\n\n## License\n\nWTFPL License.\n",
"bugtrack_url": null,
"license": "WTFPL",
"summary": "A fast goertzel calculator Rust",
"version": "0.1.0",
"project_urls": {
"Homepage": "https://github.com/JosephChotard/ultrafastgoertzel",
"Source": "https://github.com/JosephChotard/ultrafastgoertzel"
},
"split_keywords": [
"goertzel",
" rust",
" pyo3",
" signal-processing",
" fft",
" dsp"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "11ef824efe3a207ae47ce80cd7108b1fc6b859c38eb8b37c0baac0e38fd6d64d",
"md5": "065b6a00f3bba7039542c101737b79c8",
"sha256": "83a0b11f8b66ed1bfa5c45853c512f935b4fe7546eff3a3fe9a1491cc7eab7fd"
},
"downloads": -1,
"filename": "ultrafastgoertzel-0.1.0-cp39-abi3-macosx_10_12_x86_64.whl",
"has_sig": false,
"md5_digest": "065b6a00f3bba7039542c101737b79c8",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.9",
"size": 243517,
"upload_time": "2025-10-26T00:50:25",
"upload_time_iso_8601": "2025-10-26T00:50:25.451915Z",
"url": "https://files.pythonhosted.org/packages/11/ef/824efe3a207ae47ce80cd7108b1fc6b859c38eb8b37c0baac0e38fd6d64d/ultrafastgoertzel-0.1.0-cp39-abi3-macosx_10_12_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "ea67a765747baeb5b60044658cc9a23c9937deefaec00f21015c956d2f640d24",
"md5": "ad8097eed8534b2fba7820afe894f04b",
"sha256": "60ef6c93c7a2b649b665b4a224a68c1a89e95df466b56299a25628d589ca5d91"
},
"downloads": -1,
"filename": "ultrafastgoertzel-0.1.0-cp39-abi3-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "ad8097eed8534b2fba7820afe894f04b",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.9",
"size": 222168,
"upload_time": "2025-10-26T00:50:24",
"upload_time_iso_8601": "2025-10-26T00:50:24.448267Z",
"url": "https://files.pythonhosted.org/packages/ea/67/a765747baeb5b60044658cc9a23c9937deefaec00f21015c956d2f640d24/ultrafastgoertzel-0.1.0-cp39-abi3-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "5a644d58d98b5079db8600b7e6b8796eef63e9a39f7c276bef8a6c522757168b",
"md5": "6d1862392c397ff2b35ac80fa0e37a07",
"sha256": "0f2daf97c93fccec174665435a32bedc4280700f353fda2c18521f1f7eb7789f"
},
"downloads": -1,
"filename": "ultrafastgoertzel-0.1.0-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "6d1862392c397ff2b35ac80fa0e37a07",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.9",
"size": 246331,
"upload_time": "2025-10-26T00:50:22",
"upload_time_iso_8601": "2025-10-26T00:50:22.243850Z",
"url": "https://files.pythonhosted.org/packages/5a/64/4d58d98b5079db8600b7e6b8796eef63e9a39f7c276bef8a6c522757168b/ultrafastgoertzel-0.1.0-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "9f4d24f06b429d468db994b7921f8fcbe635d902245f5f09c5652f986a393b76",
"md5": "0db07b01ecf73ecd235130bc6a688aef",
"sha256": "0aa729c1fef3b6cc5d2fbecd83f58e6795d36bcff1e219b3e82ea13a5140394c"
},
"downloads": -1,
"filename": "ultrafastgoertzel-0.1.0-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "0db07b01ecf73ecd235130bc6a688aef",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.9",
"size": 261343,
"upload_time": "2025-10-26T00:50:23",
"upload_time_iso_8601": "2025-10-26T00:50:23.293392Z",
"url": "https://files.pythonhosted.org/packages/9f/4d/24f06b429d468db994b7921f8fcbe635d902245f5f09c5652f986a393b76/ultrafastgoertzel-0.1.0-cp39-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "116da394619bea21efdf8f4b3077dbfa36060fb7ef01ada68caa0a11529bf0f7",
"md5": "5bba69170e6008e050a940697645683e",
"sha256": "621cac3d35e1515d459cdba6edf14f666da78dd240cd4f51de0bca31ea5fd187"
},
"downloads": -1,
"filename": "ultrafastgoertzel-0.1.0-cp39-abi3-musllinux_1_2_aarch64.whl",
"has_sig": false,
"md5_digest": "5bba69170e6008e050a940697645683e",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.9",
"size": 428211,
"upload_time": "2025-10-26T00:50:26",
"upload_time_iso_8601": "2025-10-26T00:50:26.864264Z",
"url": "https://files.pythonhosted.org/packages/11/6d/a394619bea21efdf8f4b3077dbfa36060fb7ef01ada68caa0a11529bf0f7/ultrafastgoertzel-0.1.0-cp39-abi3-musllinux_1_2_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "8ee96d5d778cbe7c3ba0203d7c5746bf7bb1224b6af0dc1127011fd339a60ae0",
"md5": "2c3550fa83f49f054adf9fe1afb0f0a5",
"sha256": "97790be33e7c7255bfce788066e1ca1a17b2720d143f992a2e74e0696f17c772"
},
"downloads": -1,
"filename": "ultrafastgoertzel-0.1.0-cp39-abi3-musllinux_1_2_x86_64.whl",
"has_sig": false,
"md5_digest": "2c3550fa83f49f054adf9fe1afb0f0a5",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.9",
"size": 435402,
"upload_time": "2025-10-26T00:50:28",
"upload_time_iso_8601": "2025-10-26T00:50:28.264152Z",
"url": "https://files.pythonhosted.org/packages/8e/e9/6d5d778cbe7c3ba0203d7c5746bf7bb1224b6af0dc1127011fd339a60ae0/ultrafastgoertzel-0.1.0-cp39-abi3-musllinux_1_2_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "f23408a38218c3b8af1b72ec72fa5768ef3cbfcd75a8519820d28da20ddbbd33",
"md5": "fa785dfff6b4c561ca4ce799bca615df",
"sha256": "bb426bd242d05281afdc1a23e787f0a9522dc69146701e57bc7bad299776ea59"
},
"downloads": -1,
"filename": "ultrafastgoertzel-0.1.0-cp39-abi3-win_amd64.whl",
"has_sig": false,
"md5_digest": "fa785dfff6b4c561ca4ce799bca615df",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.9",
"size": 138221,
"upload_time": "2025-10-26T00:50:30",
"upload_time_iso_8601": "2025-10-26T00:50:30.330313Z",
"url": "https://files.pythonhosted.org/packages/f2/34/08a38218c3b8af1b72ec72fa5768ef3cbfcd75a8519820d28da20ddbbd33/ultrafastgoertzel-0.1.0-cp39-abi3-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "fa4dedb1c62aeebe7e5f08ca2eb7f8728ad565ab456bafb69c078f8b4233bbe3",
"md5": "424fbfd4b84412c4db5363d338dd6dd3",
"sha256": "f65061775d329adf04435ec3dc47299034b93d82e7bceead73b7bf7a407e0c14"
},
"downloads": -1,
"filename": "ultrafastgoertzel-0.1.0.tar.gz",
"has_sig": false,
"md5_digest": "424fbfd4b84412c4db5363d338dd6dd3",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 16076,
"upload_time": "2025-10-26T00:50:29",
"upload_time_iso_8601": "2025-10-26T00:50:29.390770Z",
"url": "https://files.pythonhosted.org/packages/fa/4d/edb1c62aeebe7e5f08ca2eb7f8728ad565ab456bafb69c078f8b4233bbe3/ultrafastgoertzel-0.1.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-10-26 00:50:29",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "JosephChotard",
"github_project": "ultrafastgoertzel",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "ultrafastgoertzel"
}