ultralytics


Nameultralytics JSON
Version 8.3.53 PyPI version JSON
download
home_pageNone
SummaryUltralytics YOLO 🚀 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
upload_time2024-12-22 01:04:15
maintainerNone
docs_urlNone
authorNone
requires_python>=3.8
licenseAGPL-3.0
keywords machine-learning deep-learning computer-vision ml dl ai yolo yolov3 yolov5 yolov8 yolov9 yolov10 yolo11 hub ultralytics
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <div align="center">
  <p>
    <a href="https://www.ultralytics.com/events/yolovision" target="_blank">
      <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png" alt="YOLO Vision banner"></a>
  </p>

[中文](https://docs.ultralytics.com/zh) | [한국어](https://docs.ultralytics.com/ko) | [日本語](https://docs.ultralytics.com/ja) | [Русский](https://docs.ultralytics.com/ru) | [Deutsch](https://docs.ultralytics.com/de) | [Français](https://docs.ultralytics.com/fr) | [Español](https://docs.ultralytics.com/es) | [Português](https://docs.ultralytics.com/pt) | [Türkçe](https://docs.ultralytics.com/tr) | [Tiếng Việt](https://docs.ultralytics.com/vi) | [العربية](https://docs.ultralytics.com/ar) <br>

<div>
    <a href="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml"><img src="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml/badge.svg" alt="Ultralytics CI"></a>
    <a href="https://pepy.tech/projects/ultralytics"><img src="https://static.pepy.tech/badge/ultralytics" alt="Ultralytics Downloads"></a>
    <a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="Ultralytics YOLO Citation"></a>
    <a href="https://discord.com/invite/ultralytics"><img alt="Ultralytics Discord" src="https://img.shields.io/discord/1089800235347353640?logo=discord&logoColor=white&label=Discord&color=blue"></a>
    <a href="https://community.ultralytics.com/"><img alt="Ultralytics Forums" src="https://img.shields.io/discourse/users?server=https%3A%2F%2Fcommunity.ultralytics.com&logo=discourse&label=Forums&color=blue"></a>
    <a href="https://reddit.com/r/ultralytics"><img alt="Ultralytics Reddit" src="https://img.shields.io/reddit/subreddit-subscribers/ultralytics?style=flat&logo=reddit&logoColor=white&label=Reddit&color=blue"></a>
    <br>
    <a href="https://console.paperspace.com/github/ultralytics/ultralytics"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run Ultralytics on Gradient"></a>
    <a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open Ultralytics In Colab"></a>
    <a href="https://www.kaggle.com/models/ultralytics/yolo11"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open Ultralytics In Kaggle"></a>
    <a href="https://mybinder.org/v2/gh/ultralytics/ultralytics/HEAD?labpath=examples%2Ftutorial.ipynb"><img src="https://mybinder.org/badge_logo.svg" alt="Open Ultralytics In Binder"></a>
</div>
<br>

[Ultralytics](https://www.ultralytics.com/) [YOLO11](https://github.com/ultralytics/ultralytics) is a cutting-edge, state-of-the-art (SOTA) model that builds upon the success of previous YOLO versions and introduces new features and improvements to further boost performance and flexibility. YOLO11 is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of object detection and tracking, instance segmentation, image classification and pose estimation tasks.

We hope that the resources here will help you get the most out of YOLO. Please browse the Ultralytics <a href="https://docs.ultralytics.com/">Docs</a> for details, raise an issue on <a href="https://github.com/ultralytics/ultralytics/issues/new/choose">GitHub</a> for support, questions, or discussions, become a member of the Ultralytics <a href="https://discord.com/invite/ultralytics">Discord</a>, <a href="https://reddit.com/r/ultralytics">Reddit</a> and <a href="https://community.ultralytics.com/">Forums</a>!

To request an Enterprise License please complete the form at [Ultralytics Licensing](https://www.ultralytics.com/license).

<a href="https://docs.ultralytics.com/models/yolo11/" target="_blank">
  <img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/refs/heads/main/yolo/performance-comparison.png" alt="YOLO11 performance plots">
</a>

<div align="center">
  <a href="https://github.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="2%" alt="Ultralytics GitHub"></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
  <a href="https://www.linkedin.com/company/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="2%" alt="Ultralytics LinkedIn"></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
  <a href="https://twitter.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="2%" alt="Ultralytics Twitter"></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
  <a href="https://youtube.com/ultralytics?sub_confirmation=1"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="2%" alt="Ultralytics YouTube"></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
  <a href="https://www.tiktok.com/@ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="2%" alt="Ultralytics TikTok"></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
  <a href="https://ultralytics.com/bilibili"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-bilibili.png" width="2%" alt="Ultralytics BiliBili"></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="space">
  <a href="https://discord.com/invite/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-discord.png" width="2%" alt="Ultralytics Discord"></a>
</div>
</div>

## <div align="center">Documentation</div>

See below for a quickstart install and usage examples, and see our [Docs](https://docs.ultralytics.com/) for full documentation on training, validation, prediction and deployment.

<details open>
<summary>Install</summary>

Pip install the ultralytics package including all [requirements](https://github.com/ultralytics/ultralytics/blob/main/pyproject.toml) in a [**Python>=3.8**](https://www.python.org/) environment with [**PyTorch>=1.8**](https://pytorch.org/get-started/locally/).

[![PyPI - Version](https://img.shields.io/pypi/v/ultralytics?logo=pypi&logoColor=white)](https://pypi.org/project/ultralytics/) [![Ultralytics Downloads](https://static.pepy.tech/badge/ultralytics)](https://www.pepy.tech/projects/ultralytics) [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/ultralytics?logo=python&logoColor=gold)](https://pypi.org/project/ultralytics/)

```bash
pip install ultralytics
```

For alternative installation methods including [Conda](https://anaconda.org/conda-forge/ultralytics), [Docker](https://hub.docker.com/r/ultralytics/ultralytics), and Git, please refer to the [Quickstart Guide](https://docs.ultralytics.com/quickstart/).

[![Conda Version](https://img.shields.io/conda/vn/conda-forge/ultralytics?logo=condaforge)](https://anaconda.org/conda-forge/ultralytics) [![Docker Image Version](https://img.shields.io/docker/v/ultralytics/ultralytics?sort=semver&logo=docker)](https://hub.docker.com/r/ultralytics/ultralytics) [![Ultralytics Docker Pulls](https://img.shields.io/docker/pulls/ultralytics/ultralytics?logo=docker)](https://hub.docker.com/r/ultralytics/ultralytics)

</details>

<details open>
<summary>Usage</summary>

### CLI

YOLO may be used directly in the Command Line Interface (CLI) with a `yolo` command:

```bash
yolo predict model=yolo11n.pt source='https://ultralytics.com/images/bus.jpg'
```

`yolo` can be used for a variety of tasks and modes and accepts additional arguments, e.g. `imgsz=640`. See the YOLO [CLI Docs](https://docs.ultralytics.com/usage/cli/) for examples.

### Python

YOLO may also be used directly in a Python environment, and accepts the same [arguments](https://docs.ultralytics.com/usage/cfg/) as in the CLI example above:

```python
from ultralytics import YOLO

# Load a model
model = YOLO("yolo11n.pt")

# Train the model
train_results = model.train(
    data="coco8.yaml",  # path to dataset YAML
    epochs=100,  # number of training epochs
    imgsz=640,  # training image size
    device="cpu",  # device to run on, i.e. device=0 or device=0,1,2,3 or device=cpu
)

# Evaluate model performance on the validation set
metrics = model.val()

# Perform object detection on an image
results = model("path/to/image.jpg")
results[0].show()

# Export the model to ONNX format
path = model.export(format="onnx")  # return path to exported model
```

See YOLO [Python Docs](https://docs.ultralytics.com/usage/python/) for more examples.

</details>

## <div align="center">Models</div>

YOLO11 [Detect](https://docs.ultralytics.com/tasks/detect/), [Segment](https://docs.ultralytics.com/tasks/segment/) and [Pose](https://docs.ultralytics.com/tasks/pose/) models pretrained on the [COCO](https://docs.ultralytics.com/datasets/detect/coco/) dataset are available here, as well as YOLO11 [Classify](https://docs.ultralytics.com/tasks/classify/) models pretrained on the [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/) dataset. [Track](https://docs.ultralytics.com/modes/track/) mode is available for all Detect, Segment and Pose models. All [Models](https://docs.ultralytics.com/models/) download automatically from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases) on first use.

<a href="https://docs.ultralytics.com/tasks/" target="_blank">
    <img width="100%" src="https://github.com/ultralytics/docs/releases/download/0/ultralytics-yolov8-tasks-banner.avif" alt="Ultralytics YOLO supported tasks">
</a>
<br>
<br>

<details open><summary>Detection (COCO)</summary>

See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examples with these models trained on [COCO](https://docs.ultralytics.com/datasets/detect/coco/), which include 80 pre-trained classes.

| Model                                                                                | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
| ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
| [YOLO11n](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt) | 640                   | 39.5                 | 56.1 ± 0.8                     | 1.5 ± 0.0                           | 2.6                | 6.5               |
| [YOLO11s](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s.pt) | 640                   | 47.0                 | 90.0 ± 1.2                     | 2.5 ± 0.0                           | 9.4                | 21.5              |
| [YOLO11m](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m.pt) | 640                   | 51.5                 | 183.2 ± 2.0                    | 4.7 ± 0.1                           | 20.1               | 68.0              |
| [YOLO11l](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l.pt) | 640                   | 53.4                 | 238.6 ± 1.4                    | 6.2 ± 0.1                           | 25.3               | 86.9              |
| [YOLO11x](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x.pt) | 640                   | 54.7                 | 462.8 ± 6.7                    | 11.3 ± 0.2                          | 56.9               | 194.9             |

- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org/) dataset. <br>Reproduce by `yolo val detect data=coco.yaml device=0`
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val detect data=coco.yaml batch=1 device=0|cpu`

</details>

<details><summary>Segmentation (COCO)</summary>

See [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage examples with these models trained on [COCO-Seg](https://docs.ultralytics.com/datasets/segment/coco/), which include 80 pre-trained classes.

| Model                                                                                        | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
| -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
| [YOLO11n-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-seg.pt) | 640                   | 38.9                 | 32.0                  | 65.9 ± 1.1                     | 1.8 ± 0.0                           | 2.9                | 10.4              |
| [YOLO11s-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-seg.pt) | 640                   | 46.6                 | 37.8                  | 117.6 ± 4.9                    | 2.9 ± 0.0                           | 10.1               | 35.5              |
| [YOLO11m-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-seg.pt) | 640                   | 51.5                 | 41.5                  | 281.6 ± 1.2                    | 6.3 ± 0.1                           | 22.4               | 123.3             |
| [YOLO11l-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-seg.pt) | 640                   | 53.4                 | 42.9                  | 344.2 ± 3.2                    | 7.8 ± 0.2                           | 27.6               | 142.2             |
| [YOLO11x-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-seg.pt) | 640                   | 54.7                 | 43.8                  | 664.5 ± 3.2                    | 15.8 ± 0.7                          | 62.1               | 319.0             |

- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org/) dataset. <br>Reproduce by `yolo val segment data=coco.yaml device=0`
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val segment data=coco.yaml batch=1 device=0|cpu`

</details>

<details><summary>Classification (ImageNet)</summary>

See [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usage examples with these models trained on [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/), which include 1000 pretrained classes.

| Model                                                                                        | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 640 |
| -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
| [YOLO11n-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-cls.pt) | 224                   | 70.0             | 89.4             | 5.0 ± 0.3                      | 1.1 ± 0.0                           | 1.6                | 3.3                      |
| [YOLO11s-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-cls.pt) | 224                   | 75.4             | 92.7             | 7.9 ± 0.2                      | 1.3 ± 0.0                           | 5.5                | 12.1                     |
| [YOLO11m-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-cls.pt) | 224                   | 77.3             | 93.9             | 17.2 ± 0.4                     | 2.0 ± 0.0                           | 10.4               | 39.3                     |
| [YOLO11l-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-cls.pt) | 224                   | 78.3             | 94.3             | 23.2 ± 0.3                     | 2.8 ± 0.0                           | 12.9               | 49.4                     |
| [YOLO11x-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-cls.pt) | 224                   | 79.5             | 94.9             | 41.4 ± 0.9                     | 3.8 ± 0.0                           | 28.4               | 110.4                    |

- **acc** values are model accuracies on the [ImageNet](https://www.image-net.org/) dataset validation set. <br>Reproduce by `yolo val classify data=path/to/ImageNet device=0`
- **Speed** averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`

</details>

<details><summary>Pose (COCO)</summary>

See [Pose Docs](https://docs.ultralytics.com/tasks/pose/) for usage examples with these models trained on [COCO-Pose](https://docs.ultralytics.com/datasets/pose/coco/), which include 1 pre-trained class, person.

| Model                                                                                          | size<br><sup>(pixels) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
| ---------------------------------------------------------------------------------------------- | --------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
| [YOLO11n-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-pose.pt) | 640                   | 50.0                  | 81.0               | 52.4 ± 0.5                     | 1.7 ± 0.0                           | 2.9                | 7.6               |
| [YOLO11s-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-pose.pt) | 640                   | 58.9                  | 86.3               | 90.5 ± 0.6                     | 2.6 ± 0.0                           | 9.9                | 23.2              |
| [YOLO11m-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-pose.pt) | 640                   | 64.9                  | 89.4               | 187.3 ± 0.8                    | 4.9 ± 0.1                           | 20.9               | 71.7              |
| [YOLO11l-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-pose.pt) | 640                   | 66.1                  | 89.9               | 247.7 ± 1.1                    | 6.4 ± 0.1                           | 26.2               | 90.7              |
| [YOLO11x-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-pose.pt) | 640                   | 69.5                  | 91.1               | 488.0 ± 13.9                   | 12.1 ± 0.2                          | 58.8               | 203.3             |

- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO Keypoints val2017](https://cocodataset.org/) dataset. <br>Reproduce by `yolo val pose data=coco-pose.yaml device=0`
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val pose data=coco-pose.yaml batch=1 device=0|cpu`

</details>

<details><summary>OBB (DOTAv1)</summary>

See [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples with these models trained on [DOTAv1](https://docs.ultralytics.com/datasets/obb/dota-v2/#dota-v10/), which include 15 pre-trained classes.

| Model                                                                                        | size<br><sup>(pixels) | mAP<sup>test<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
| -------------------------------------------------------------------------------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
| [YOLO11n-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-obb.pt) | 1024                  | 78.4               | 117.6 ± 0.8                    | 4.4 ± 0.0                           | 2.7                | 17.2              |
| [YOLO11s-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-obb.pt) | 1024                  | 79.5               | 219.4 ± 4.0                    | 5.1 ± 0.0                           | 9.7                | 57.5              |
| [YOLO11m-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-obb.pt) | 1024                  | 80.9               | 562.8 ± 2.9                    | 10.1 ± 0.4                          | 20.9               | 183.5             |
| [YOLO11l-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-obb.pt) | 1024                  | 81.0               | 712.5 ± 5.0                    | 13.5 ± 0.6                          | 26.2               | 232.0             |
| [YOLO11x-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-obb.pt) | 1024                  | 81.3               | 1408.6 ± 7.7                   | 28.6 ± 1.0                          | 58.8               | 520.2             |

- **mAP<sup>test</sup>** values are for single-model multiscale on [DOTAv1](https://captain-whu.github.io/DOTA/index.html) dataset. <br>Reproduce by `yolo val obb data=DOTAv1.yaml device=0 split=test` and submit merged results to [DOTA evaluation](https://captain-whu.github.io/DOTA/evaluation.html).
- **Speed** averaged over DOTAv1 val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu`

</details>

## <div align="center">Integrations</div>

Our key integrations with leading AI platforms extend the functionality of Ultralytics' offerings, enhancing tasks like dataset labeling, training, visualization, and model management. Discover how Ultralytics, in collaboration with [W&B](https://docs.wandb.ai/guides/integrations/ultralytics/), [Comet](https://bit.ly/yolov8-readme-comet), [Roboflow](https://roboflow.com/?ref=ultralytics) and [OpenVINO](https://docs.ultralytics.com/integrations/openvino/), can optimize your AI workflow.

<a href="https://www.ultralytics.com/hub" target="_blank">
    <img width="100%" src="https://github.com/ultralytics/assets/raw/main/yolov8/banner-integrations.png" alt="Ultralytics active learning integrations">
</a>
<br>
<br>

<div align="center">
  <a href="https://www.ultralytics.com/hub">
    <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-ultralytics-hub.png" width="10%" alt="Ultralytics HUB logo"></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="space">
  <a href="https://docs.wandb.ai/guides/integrations/ultralytics/">
    <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-wb.png" width="10%" alt="ClearML logo"></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="space">
  <a href="https://bit.ly/yolov8-readme-comet">
    <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-comet.png" width="10%" alt="Comet ML logo"></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="space">
  <a href="https://bit.ly/yolov5-neuralmagic">
    <img src="https://github.com/ultralytics/assets/raw/main/partners/logo-neuralmagic.png" width="10%" alt="NeuralMagic logo"></a>
</div>

|                                                         Ultralytics HUB 🚀                                                         |                                                               W&B                                                               |                                                                       Comet ⭐ NEW                                                                        |                                              Neural Magic                                              |
| :--------------------------------------------------------------------------------------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------------------------------: |
| Streamline YOLO workflows: Label, train, and deploy effortlessly with [Ultralytics HUB](https://www.ultralytics.com/hub). Try now! | Track experiments, hyperparameters, and results with [Weights & Biases](https://docs.wandb.ai/guides/integrations/ultralytics/) | Free forever, [Comet](https://bit.ly/yolov5-readme-comet) lets you save YOLO11 models, resume training, and interactively visualize and debug predictions | Run YOLO11 inference up to 6x faster with [Neural Magic DeepSparse](https://bit.ly/yolov5-neuralmagic) |

## <div align="center">Ultralytics HUB</div>

Experience seamless AI with [Ultralytics HUB](https://www.ultralytics.com/hub) ⭐, the all-in-one solution for data visualization, YOLO11 🚀 model training and deployment, without any coding. Transform images into actionable insights and bring your AI visions to life with ease using our cutting-edge platform and user-friendly [Ultralytics App](https://www.ultralytics.com/app-install). Start your journey for **Free** now!

<a href="https://www.ultralytics.com/hub" target="_blank">
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png" alt="Ultralytics HUB preview image"></a>

## <div align="center">Contribute</div>

We love your input! Ultralytics YOLO would not be possible without help from our community. Please see our [Contributing Guide](https://docs.ultralytics.com/help/contributing/) to get started, and fill out our [Survey](https://www.ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) to send us feedback on your experience. Thank you 🙏 to all our contributors!

<!-- SVG image from https://opencollective.com/ultralytics/contributors.svg?width=990 -->

<a href="https://github.com/ultralytics/ultralytics/graphs/contributors">
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/image-contributors.png" alt="Ultralytics open-source contributors"></a>

## <div align="center">License</div>

Ultralytics offers two licensing options to accommodate diverse use cases:

- **AGPL-3.0 License**: This [OSI-approved](https://opensource.org/license) open-source license is ideal for students and enthusiasts, promoting open collaboration and knowledge sharing. See the [LICENSE](https://github.com/ultralytics/ultralytics/blob/main/LICENSE) file for more details.
- **Enterprise License**: Designed for commercial use, this license permits seamless integration of Ultralytics software and AI models into commercial goods and services, bypassing the open-source requirements of AGPL-3.0. If your scenario involves embedding our solutions into a commercial offering, reach out through [Ultralytics Licensing](https://www.ultralytics.com/license).

## <div align="center">Contact</div>

For Ultralytics bug reports and feature requests please visit [GitHub Issues](https://github.com/ultralytics/ultralytics/issues). Become a member of the Ultralytics [Discord](https://discord.com/invite/ultralytics), [Reddit](https://www.reddit.com/r/ultralytics/), or [Forums](https://community.ultralytics.com/) for asking questions, sharing projects, learning discussions, or for help with all things Ultralytics!

<br>
<div align="center">
  <a href="https://github.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="3%" alt="Ultralytics GitHub"></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
  <a href="https://www.linkedin.com/company/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="3%" alt="Ultralytics LinkedIn"></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
  <a href="https://twitter.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="3%" alt="Ultralytics Twitter"></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
  <a href="https://youtube.com/ultralytics?sub_confirmation=1"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="3%" alt="Ultralytics YouTube"></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
  <a href="https://www.tiktok.com/@ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="3%" alt="Ultralytics TikTok"></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
  <a href="https://ultralytics.com/bilibili"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-bilibili.png" width="3%" alt="Ultralytics BiliBili"></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
  <a href="https://discord.com/invite/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-discord.png" width="3%" alt="Ultralytics Discord"></a>
</div>

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "ultralytics",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "Ultralytics <hello@ultralytics.com>",
    "keywords": "machine-learning, deep-learning, computer-vision, ML, DL, AI, YOLO, YOLOv3, YOLOv5, YOLOv8, YOLOv9, YOLOv10, YOLO11, HUB, Ultralytics",
    "author": null,
    "author_email": "Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>",
    "download_url": "https://files.pythonhosted.org/packages/c2/73/b486c3d1129b3375579eec5fb348ae0070d73092585b71c2ed0be3c619f8/ultralytics-8.3.53.tar.gz",
    "platform": null,
    "description": "<div align=\"center\">\n  <p>\n    <a href=\"https://www.ultralytics.com/events/yolovision\" target=\"_blank\">\n      <img width=\"100%\" src=\"https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png\" alt=\"YOLO Vision banner\"></a>\n  </p>\n\n[\u4e2d\u6587](https://docs.ultralytics.com/zh) | [\ud55c\uad6d\uc5b4](https://docs.ultralytics.com/ko) | [\u65e5\u672c\u8a9e](https://docs.ultralytics.com/ja) | [\u0420\u0443\u0441\u0441\u043a\u0438\u0439](https://docs.ultralytics.com/ru) | [Deutsch](https://docs.ultralytics.com/de) | [Fran\u00e7ais](https://docs.ultralytics.com/fr) | [Espa\u00f1ol](https://docs.ultralytics.com/es) | [Portugu\u00eas](https://docs.ultralytics.com/pt) | [T\u00fcrk\u00e7e](https://docs.ultralytics.com/tr) | [Ti\u1ebfng Vi\u1ec7t](https://docs.ultralytics.com/vi) | [\u0627\u0644\u0639\u0631\u0628\u064a\u0629](https://docs.ultralytics.com/ar) <br>\n\n<div>\n    <a href=\"https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml\"><img src=\"https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml/badge.svg\" alt=\"Ultralytics CI\"></a>\n    <a href=\"https://pepy.tech/projects/ultralytics\"><img src=\"https://static.pepy.tech/badge/ultralytics\" alt=\"Ultralytics Downloads\"></a>\n    <a href=\"https://zenodo.org/badge/latestdoi/264818686\"><img src=\"https://zenodo.org/badge/264818686.svg\" alt=\"Ultralytics YOLO Citation\"></a>\n    <a href=\"https://discord.com/invite/ultralytics\"><img alt=\"Ultralytics Discord\" src=\"https://img.shields.io/discord/1089800235347353640?logo=discord&logoColor=white&label=Discord&color=blue\"></a>\n    <a href=\"https://community.ultralytics.com/\"><img alt=\"Ultralytics Forums\" src=\"https://img.shields.io/discourse/users?server=https%3A%2F%2Fcommunity.ultralytics.com&logo=discourse&label=Forums&color=blue\"></a>\n    <a href=\"https://reddit.com/r/ultralytics\"><img alt=\"Ultralytics Reddit\" src=\"https://img.shields.io/reddit/subreddit-subscribers/ultralytics?style=flat&logo=reddit&logoColor=white&label=Reddit&color=blue\"></a>\n    <br>\n    <a href=\"https://console.paperspace.com/github/ultralytics/ultralytics\"><img src=\"https://assets.paperspace.io/img/gradient-badge.svg\" alt=\"Run Ultralytics on Gradient\"></a>\n    <a href=\"https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open Ultralytics In Colab\"></a>\n    <a href=\"https://www.kaggle.com/models/ultralytics/yolo11\"><img src=\"https://kaggle.com/static/images/open-in-kaggle.svg\" alt=\"Open Ultralytics In Kaggle\"></a>\n    <a href=\"https://mybinder.org/v2/gh/ultralytics/ultralytics/HEAD?labpath=examples%2Ftutorial.ipynb\"><img src=\"https://mybinder.org/badge_logo.svg\" alt=\"Open Ultralytics In Binder\"></a>\n</div>\n<br>\n\n[Ultralytics](https://www.ultralytics.com/) [YOLO11](https://github.com/ultralytics/ultralytics) is a cutting-edge, state-of-the-art (SOTA) model that builds upon the success of previous YOLO versions and introduces new features and improvements to further boost performance and flexibility. YOLO11 is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of object detection and tracking, instance segmentation, image classification and pose estimation tasks.\n\nWe hope that the resources here will help you get the most out of YOLO. Please browse the Ultralytics <a href=\"https://docs.ultralytics.com/\">Docs</a> for details, raise an issue on <a href=\"https://github.com/ultralytics/ultralytics/issues/new/choose\">GitHub</a> for support, questions, or discussions, become a member of the Ultralytics <a href=\"https://discord.com/invite/ultralytics\">Discord</a>, <a href=\"https://reddit.com/r/ultralytics\">Reddit</a> and <a href=\"https://community.ultralytics.com/\">Forums</a>!\n\nTo request an Enterprise License please complete the form at [Ultralytics Licensing](https://www.ultralytics.com/license).\n\n<a href=\"https://docs.ultralytics.com/models/yolo11/\" target=\"_blank\">\n  <img width=\"100%\" src=\"https://raw.githubusercontent.com/ultralytics/assets/refs/heads/main/yolo/performance-comparison.png\" alt=\"YOLO11 performance plots\">\n</a>\n\n<div align=\"center\">\n  <a href=\"https://github.com/ultralytics\"><img src=\"https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png\" width=\"2%\" alt=\"Ultralytics GitHub\"></a>\n  <img src=\"https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png\" width=\"2%\" alt=\"space\">\n  <a href=\"https://www.linkedin.com/company/ultralytics/\"><img src=\"https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png\" width=\"2%\" alt=\"Ultralytics LinkedIn\"></a>\n  <img src=\"https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png\" width=\"2%\" alt=\"space\">\n  <a href=\"https://twitter.com/ultralytics\"><img src=\"https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png\" width=\"2%\" alt=\"Ultralytics Twitter\"></a>\n  <img src=\"https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png\" width=\"2%\" alt=\"space\">\n  <a href=\"https://youtube.com/ultralytics?sub_confirmation=1\"><img src=\"https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png\" width=\"2%\" alt=\"Ultralytics YouTube\"></a>\n  <img src=\"https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png\" width=\"2%\" alt=\"space\">\n  <a href=\"https://www.tiktok.com/@ultralytics\"><img src=\"https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png\" width=\"2%\" alt=\"Ultralytics TikTok\"></a>\n  <img src=\"https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png\" width=\"2%\" alt=\"space\">\n  <a href=\"https://ultralytics.com/bilibili\"><img src=\"https://github.com/ultralytics/assets/raw/main/social/logo-social-bilibili.png\" width=\"2%\" alt=\"Ultralytics BiliBili\"></a>\n  <img src=\"https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png\" width=\"2%\" alt=\"space\">\n  <a href=\"https://discord.com/invite/ultralytics\"><img src=\"https://github.com/ultralytics/assets/raw/main/social/logo-social-discord.png\" width=\"2%\" alt=\"Ultralytics Discord\"></a>\n</div>\n</div>\n\n## <div align=\"center\">Documentation</div>\n\nSee below for a quickstart install and usage examples, and see our [Docs](https://docs.ultralytics.com/) for full documentation on training, validation, prediction and deployment.\n\n<details open>\n<summary>Install</summary>\n\nPip install the ultralytics package including all [requirements](https://github.com/ultralytics/ultralytics/blob/main/pyproject.toml) in a [**Python>=3.8**](https://www.python.org/) environment with [**PyTorch>=1.8**](https://pytorch.org/get-started/locally/).\n\n[![PyPI - Version](https://img.shields.io/pypi/v/ultralytics?logo=pypi&logoColor=white)](https://pypi.org/project/ultralytics/) [![Ultralytics Downloads](https://static.pepy.tech/badge/ultralytics)](https://www.pepy.tech/projects/ultralytics) [![PyPI - Python Version](https://img.shields.io/pypi/pyversions/ultralytics?logo=python&logoColor=gold)](https://pypi.org/project/ultralytics/)\n\n```bash\npip install ultralytics\n```\n\nFor alternative installation methods including [Conda](https://anaconda.org/conda-forge/ultralytics), [Docker](https://hub.docker.com/r/ultralytics/ultralytics), and Git, please refer to the [Quickstart Guide](https://docs.ultralytics.com/quickstart/).\n\n[![Conda Version](https://img.shields.io/conda/vn/conda-forge/ultralytics?logo=condaforge)](https://anaconda.org/conda-forge/ultralytics) [![Docker Image Version](https://img.shields.io/docker/v/ultralytics/ultralytics?sort=semver&logo=docker)](https://hub.docker.com/r/ultralytics/ultralytics) [![Ultralytics Docker Pulls](https://img.shields.io/docker/pulls/ultralytics/ultralytics?logo=docker)](https://hub.docker.com/r/ultralytics/ultralytics)\n\n</details>\n\n<details open>\n<summary>Usage</summary>\n\n### CLI\n\nYOLO may be used directly in the Command Line Interface (CLI) with a `yolo` command:\n\n```bash\nyolo predict model=yolo11n.pt source='https://ultralytics.com/images/bus.jpg'\n```\n\n`yolo` can be used for a variety of tasks and modes and accepts additional arguments, e.g. `imgsz=640`. See the YOLO [CLI Docs](https://docs.ultralytics.com/usage/cli/) for examples.\n\n### Python\n\nYOLO may also be used directly in a Python environment, and accepts the same [arguments](https://docs.ultralytics.com/usage/cfg/) as in the CLI example above:\n\n```python\nfrom ultralytics import YOLO\n\n# Load a model\nmodel = YOLO(\"yolo11n.pt\")\n\n# Train the model\ntrain_results = model.train(\n    data=\"coco8.yaml\",  # path to dataset YAML\n    epochs=100,  # number of training epochs\n    imgsz=640,  # training image size\n    device=\"cpu\",  # device to run on, i.e. device=0 or device=0,1,2,3 or device=cpu\n)\n\n# Evaluate model performance on the validation set\nmetrics = model.val()\n\n# Perform object detection on an image\nresults = model(\"path/to/image.jpg\")\nresults[0].show()\n\n# Export the model to ONNX format\npath = model.export(format=\"onnx\")  # return path to exported model\n```\n\nSee YOLO [Python Docs](https://docs.ultralytics.com/usage/python/) for more examples.\n\n</details>\n\n## <div align=\"center\">Models</div>\n\nYOLO11 [Detect](https://docs.ultralytics.com/tasks/detect/), [Segment](https://docs.ultralytics.com/tasks/segment/) and [Pose](https://docs.ultralytics.com/tasks/pose/) models pretrained on the [COCO](https://docs.ultralytics.com/datasets/detect/coco/) dataset are available here, as well as YOLO11 [Classify](https://docs.ultralytics.com/tasks/classify/) models pretrained on the [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/) dataset. [Track](https://docs.ultralytics.com/modes/track/) mode is available for all Detect, Segment and Pose models. All [Models](https://docs.ultralytics.com/models/) download automatically from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases) on first use.\n\n<a href=\"https://docs.ultralytics.com/tasks/\" target=\"_blank\">\n    <img width=\"100%\" src=\"https://github.com/ultralytics/docs/releases/download/0/ultralytics-yolov8-tasks-banner.avif\" alt=\"Ultralytics YOLO supported tasks\">\n</a>\n<br>\n<br>\n\n<details open><summary>Detection (COCO)</summary>\n\nSee [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examples with these models trained on [COCO](https://docs.ultralytics.com/datasets/detect/coco/), which include 80 pre-trained classes.\n\n| Model                                                                                | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |\n| ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |\n| [YOLO11n](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt) | 640                   | 39.5                 | 56.1 \u00b1 0.8                     | 1.5 \u00b1 0.0                           | 2.6                | 6.5               |\n| [YOLO11s](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s.pt) | 640                   | 47.0                 | 90.0 \u00b1 1.2                     | 2.5 \u00b1 0.0                           | 9.4                | 21.5              |\n| [YOLO11m](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m.pt) | 640                   | 51.5                 | 183.2 \u00b1 2.0                    | 4.7 \u00b1 0.1                           | 20.1               | 68.0              |\n| [YOLO11l](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l.pt) | 640                   | 53.4                 | 238.6 \u00b1 1.4                    | 6.2 \u00b1 0.1                           | 25.3               | 86.9              |\n| [YOLO11x](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x.pt) | 640                   | 54.7                 | 462.8 \u00b1 6.7                    | 11.3 \u00b1 0.2                          | 56.9               | 194.9             |\n\n- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org/) dataset. <br>Reproduce by `yolo val detect data=coco.yaml device=0`\n- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val detect data=coco.yaml batch=1 device=0|cpu`\n\n</details>\n\n<details><summary>Segmentation (COCO)</summary>\n\nSee [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage examples with these models trained on [COCO-Seg](https://docs.ultralytics.com/datasets/segment/coco/), which include 80 pre-trained classes.\n\n| Model                                                                                        | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |\n| -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |\n| [YOLO11n-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-seg.pt) | 640                   | 38.9                 | 32.0                  | 65.9 \u00b1 1.1                     | 1.8 \u00b1 0.0                           | 2.9                | 10.4              |\n| [YOLO11s-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-seg.pt) | 640                   | 46.6                 | 37.8                  | 117.6 \u00b1 4.9                    | 2.9 \u00b1 0.0                           | 10.1               | 35.5              |\n| [YOLO11m-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-seg.pt) | 640                   | 51.5                 | 41.5                  | 281.6 \u00b1 1.2                    | 6.3 \u00b1 0.1                           | 22.4               | 123.3             |\n| [YOLO11l-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-seg.pt) | 640                   | 53.4                 | 42.9                  | 344.2 \u00b1 3.2                    | 7.8 \u00b1 0.2                           | 27.6               | 142.2             |\n| [YOLO11x-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-seg.pt) | 640                   | 54.7                 | 43.8                  | 664.5 \u00b1 3.2                    | 15.8 \u00b1 0.7                          | 62.1               | 319.0             |\n\n- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org/) dataset. <br>Reproduce by `yolo val segment data=coco.yaml device=0`\n- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val segment data=coco.yaml batch=1 device=0|cpu`\n\n</details>\n\n<details><summary>Classification (ImageNet)</summary>\n\nSee [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usage examples with these models trained on [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/), which include 1000 pretrained classes.\n\n| Model                                                                                        | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 640 |\n| -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |\n| [YOLO11n-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-cls.pt) | 224                   | 70.0             | 89.4             | 5.0 \u00b1 0.3                      | 1.1 \u00b1 0.0                           | 1.6                | 3.3                      |\n| [YOLO11s-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-cls.pt) | 224                   | 75.4             | 92.7             | 7.9 \u00b1 0.2                      | 1.3 \u00b1 0.0                           | 5.5                | 12.1                     |\n| [YOLO11m-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-cls.pt) | 224                   | 77.3             | 93.9             | 17.2 \u00b1 0.4                     | 2.0 \u00b1 0.0                           | 10.4               | 39.3                     |\n| [YOLO11l-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-cls.pt) | 224                   | 78.3             | 94.3             | 23.2 \u00b1 0.3                     | 2.8 \u00b1 0.0                           | 12.9               | 49.4                     |\n| [YOLO11x-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-cls.pt) | 224                   | 79.5             | 94.9             | 41.4 \u00b1 0.9                     | 3.8 \u00b1 0.0                           | 28.4               | 110.4                    |\n\n- **acc** values are model accuracies on the [ImageNet](https://www.image-net.org/) dataset validation set. <br>Reproduce by `yolo val classify data=path/to/ImageNet device=0`\n- **Speed** averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`\n\n</details>\n\n<details><summary>Pose (COCO)</summary>\n\nSee [Pose Docs](https://docs.ultralytics.com/tasks/pose/) for usage examples with these models trained on [COCO-Pose](https://docs.ultralytics.com/datasets/pose/coco/), which include 1 pre-trained class, person.\n\n| Model                                                                                          | size<br><sup>(pixels) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |\n| ---------------------------------------------------------------------------------------------- | --------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |\n| [YOLO11n-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-pose.pt) | 640                   | 50.0                  | 81.0               | 52.4 \u00b1 0.5                     | 1.7 \u00b1 0.0                           | 2.9                | 7.6               |\n| [YOLO11s-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-pose.pt) | 640                   | 58.9                  | 86.3               | 90.5 \u00b1 0.6                     | 2.6 \u00b1 0.0                           | 9.9                | 23.2              |\n| [YOLO11m-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-pose.pt) | 640                   | 64.9                  | 89.4               | 187.3 \u00b1 0.8                    | 4.9 \u00b1 0.1                           | 20.9               | 71.7              |\n| [YOLO11l-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-pose.pt) | 640                   | 66.1                  | 89.9               | 247.7 \u00b1 1.1                    | 6.4 \u00b1 0.1                           | 26.2               | 90.7              |\n| [YOLO11x-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-pose.pt) | 640                   | 69.5                  | 91.1               | 488.0 \u00b1 13.9                   | 12.1 \u00b1 0.2                          | 58.8               | 203.3             |\n\n- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO Keypoints val2017](https://cocodataset.org/) dataset. <br>Reproduce by `yolo val pose data=coco-pose.yaml device=0`\n- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val pose data=coco-pose.yaml batch=1 device=0|cpu`\n\n</details>\n\n<details><summary>OBB (DOTAv1)</summary>\n\nSee [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples with these models trained on [DOTAv1](https://docs.ultralytics.com/datasets/obb/dota-v2/#dota-v10/), which include 15 pre-trained classes.\n\n| Model                                                                                        | size<br><sup>(pixels) | mAP<sup>test<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |\n| -------------------------------------------------------------------------------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |\n| [YOLO11n-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-obb.pt) | 1024                  | 78.4               | 117.6 \u00b1 0.8                    | 4.4 \u00b1 0.0                           | 2.7                | 17.2              |\n| [YOLO11s-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-obb.pt) | 1024                  | 79.5               | 219.4 \u00b1 4.0                    | 5.1 \u00b1 0.0                           | 9.7                | 57.5              |\n| [YOLO11m-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-obb.pt) | 1024                  | 80.9               | 562.8 \u00b1 2.9                    | 10.1 \u00b1 0.4                          | 20.9               | 183.5             |\n| [YOLO11l-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-obb.pt) | 1024                  | 81.0               | 712.5 \u00b1 5.0                    | 13.5 \u00b1 0.6                          | 26.2               | 232.0             |\n| [YOLO11x-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-obb.pt) | 1024                  | 81.3               | 1408.6 \u00b1 7.7                   | 28.6 \u00b1 1.0                          | 58.8               | 520.2             |\n\n- **mAP<sup>test</sup>** values are for single-model multiscale on [DOTAv1](https://captain-whu.github.io/DOTA/index.html) dataset. <br>Reproduce by `yolo val obb data=DOTAv1.yaml device=0 split=test` and submit merged results to [DOTA evaluation](https://captain-whu.github.io/DOTA/evaluation.html).\n- **Speed** averaged over DOTAv1 val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu`\n\n</details>\n\n## <div align=\"center\">Integrations</div>\n\nOur key integrations with leading AI platforms extend the functionality of Ultralytics' offerings, enhancing tasks like dataset labeling, training, visualization, and model management. Discover how Ultralytics, in collaboration with [W&B](https://docs.wandb.ai/guides/integrations/ultralytics/), [Comet](https://bit.ly/yolov8-readme-comet), [Roboflow](https://roboflow.com/?ref=ultralytics) and [OpenVINO](https://docs.ultralytics.com/integrations/openvino/), can optimize your AI workflow.\n\n<a href=\"https://www.ultralytics.com/hub\" target=\"_blank\">\n    <img width=\"100%\" src=\"https://github.com/ultralytics/assets/raw/main/yolov8/banner-integrations.png\" alt=\"Ultralytics active learning integrations\">\n</a>\n<br>\n<br>\n\n<div align=\"center\">\n  <a href=\"https://www.ultralytics.com/hub\">\n    <img src=\"https://github.com/ultralytics/assets/raw/main/partners/logo-ultralytics-hub.png\" width=\"10%\" alt=\"Ultralytics HUB logo\"></a>\n  <img src=\"https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png\" width=\"15%\" height=\"0\" alt=\"space\">\n  <a href=\"https://docs.wandb.ai/guides/integrations/ultralytics/\">\n    <img src=\"https://github.com/ultralytics/assets/raw/main/partners/logo-wb.png\" width=\"10%\" alt=\"ClearML logo\"></a>\n  <img src=\"https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png\" width=\"15%\" height=\"0\" alt=\"space\">\n  <a href=\"https://bit.ly/yolov8-readme-comet\">\n    <img src=\"https://github.com/ultralytics/assets/raw/main/partners/logo-comet.png\" width=\"10%\" alt=\"Comet ML logo\"></a>\n  <img src=\"https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png\" width=\"15%\" height=\"0\" alt=\"space\">\n  <a href=\"https://bit.ly/yolov5-neuralmagic\">\n    <img src=\"https://github.com/ultralytics/assets/raw/main/partners/logo-neuralmagic.png\" width=\"10%\" alt=\"NeuralMagic logo\"></a>\n</div>\n\n|                                                         Ultralytics HUB \ud83d\ude80                                                         |                                                               W&B                                                               |                                                                       Comet \u2b50 NEW                                                                        |                                              Neural Magic                                              |\n| :--------------------------------------------------------------------------------------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------------------------------: |\n| Streamline YOLO workflows: Label, train, and deploy effortlessly with [Ultralytics HUB](https://www.ultralytics.com/hub). Try now! | Track experiments, hyperparameters, and results with [Weights & Biases](https://docs.wandb.ai/guides/integrations/ultralytics/) | Free forever, [Comet](https://bit.ly/yolov5-readme-comet) lets you save YOLO11 models, resume training, and interactively visualize and debug predictions | Run YOLO11 inference up to 6x faster with [Neural Magic DeepSparse](https://bit.ly/yolov5-neuralmagic) |\n\n## <div align=\"center\">Ultralytics HUB</div>\n\nExperience seamless AI with [Ultralytics HUB](https://www.ultralytics.com/hub) \u2b50, the all-in-one solution for data visualization, YOLO11 \ud83d\ude80 model training and deployment, without any coding. Transform images into actionable insights and bring your AI visions to life with ease using our cutting-edge platform and user-friendly [Ultralytics App](https://www.ultralytics.com/app-install). Start your journey for **Free** now!\n\n<a href=\"https://www.ultralytics.com/hub\" target=\"_blank\">\n<img width=\"100%\" src=\"https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png\" alt=\"Ultralytics HUB preview image\"></a>\n\n## <div align=\"center\">Contribute</div>\n\nWe love your input! Ultralytics YOLO would not be possible without help from our community. Please see our [Contributing Guide](https://docs.ultralytics.com/help/contributing/) to get started, and fill out our [Survey](https://www.ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) to send us feedback on your experience. Thank you \ud83d\ude4f to all our contributors!\n\n<!-- SVG image from https://opencollective.com/ultralytics/contributors.svg?width=990 -->\n\n<a href=\"https://github.com/ultralytics/ultralytics/graphs/contributors\">\n<img width=\"100%\" src=\"https://github.com/ultralytics/assets/raw/main/im/image-contributors.png\" alt=\"Ultralytics open-source contributors\"></a>\n\n## <div align=\"center\">License</div>\n\nUltralytics offers two licensing options to accommodate diverse use cases:\n\n- **AGPL-3.0 License**: This [OSI-approved](https://opensource.org/license) open-source license is ideal for students and enthusiasts, promoting open collaboration and knowledge sharing. See the [LICENSE](https://github.com/ultralytics/ultralytics/blob/main/LICENSE) file for more details.\n- **Enterprise License**: Designed for commercial use, this license permits seamless integration of Ultralytics software and AI models into commercial goods and services, bypassing the open-source requirements of AGPL-3.0. If your scenario involves embedding our solutions into a commercial offering, reach out through [Ultralytics Licensing](https://www.ultralytics.com/license).\n\n## <div align=\"center\">Contact</div>\n\nFor Ultralytics bug reports and feature requests please visit [GitHub Issues](https://github.com/ultralytics/ultralytics/issues). Become a member of the Ultralytics [Discord](https://discord.com/invite/ultralytics), [Reddit](https://www.reddit.com/r/ultralytics/), or [Forums](https://community.ultralytics.com/) for asking questions, sharing projects, learning discussions, or for help with all things Ultralytics!\n\n<br>\n<div align=\"center\">\n  <a href=\"https://github.com/ultralytics\"><img src=\"https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png\" width=\"3%\" alt=\"Ultralytics GitHub\"></a>\n  <img src=\"https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png\" width=\"3%\" alt=\"space\">\n  <a href=\"https://www.linkedin.com/company/ultralytics/\"><img src=\"https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png\" width=\"3%\" alt=\"Ultralytics LinkedIn\"></a>\n  <img src=\"https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png\" width=\"3%\" alt=\"space\">\n  <a href=\"https://twitter.com/ultralytics\"><img src=\"https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png\" width=\"3%\" alt=\"Ultralytics Twitter\"></a>\n  <img src=\"https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png\" width=\"3%\" alt=\"space\">\n  <a href=\"https://youtube.com/ultralytics?sub_confirmation=1\"><img src=\"https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png\" width=\"3%\" alt=\"Ultralytics YouTube\"></a>\n  <img src=\"https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png\" width=\"3%\" alt=\"space\">\n  <a href=\"https://www.tiktok.com/@ultralytics\"><img src=\"https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png\" width=\"3%\" alt=\"Ultralytics TikTok\"></a>\n  <img src=\"https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png\" width=\"3%\" alt=\"space\">\n  <a href=\"https://ultralytics.com/bilibili\"><img src=\"https://github.com/ultralytics/assets/raw/main/social/logo-social-bilibili.png\" width=\"3%\" alt=\"Ultralytics BiliBili\"></a>\n  <img src=\"https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png\" width=\"3%\" alt=\"space\">\n  <a href=\"https://discord.com/invite/ultralytics\"><img src=\"https://github.com/ultralytics/assets/raw/main/social/logo-social-discord.png\" width=\"3%\" alt=\"Ultralytics Discord\"></a>\n</div>\n",
    "bugtrack_url": null,
    "license": "AGPL-3.0",
    "summary": "Ultralytics YOLO \ud83d\ude80 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.",
    "version": "8.3.53",
    "project_urls": {
        "Bug Reports": "https://github.com/ultralytics/ultralytics/issues",
        "Changelog": "https://github.com/ultralytics/ultralytics/releases",
        "Documentation": "https://docs.ultralytics.com",
        "Homepage": "https://ultralytics.com",
        "Source": "https://github.com/ultralytics/ultralytics"
    },
    "split_keywords": [
        "machine-learning",
        " deep-learning",
        " computer-vision",
        " ml",
        " dl",
        " ai",
        " yolo",
        " yolov3",
        " yolov5",
        " yolov8",
        " yolov9",
        " yolov10",
        " yolo11",
        " hub",
        " ultralytics"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "5e12bdb1a1c0cd48054fd472f28dac65d7ff88b2f34c9097ac80e47fe9257f3b",
                "md5": "603fbc47196adaf31731396c19d151f0",
                "sha256": "240ad0351a5e07520522a8d516a0edabf9a9b8bf58c4122261966e0fa64548c2"
            },
            "downloads": -1,
            "filename": "ultralytics-8.3.53-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "603fbc47196adaf31731396c19d151f0",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 902203,
            "upload_time": "2024-12-22T01:04:12",
            "upload_time_iso_8601": "2024-12-22T01:04:12.141297Z",
            "url": "https://files.pythonhosted.org/packages/5e/12/bdb1a1c0cd48054fd472f28dac65d7ff88b2f34c9097ac80e47fe9257f3b/ultralytics-8.3.53-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c273b486c3d1129b3375579eec5fb348ae0070d73092585b71c2ed0be3c619f8",
                "md5": "d8a3622cb5943ed61d441427a4b81644",
                "sha256": "541a5594880059f8d74672f9a4995fb50a609b84bda62973f458f6c09b3863a2"
            },
            "downloads": -1,
            "filename": "ultralytics-8.3.53.tar.gz",
            "has_sig": false,
            "md5_digest": "d8a3622cb5943ed61d441427a4b81644",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 781611,
            "upload_time": "2024-12-22T01:04:15",
            "upload_time_iso_8601": "2024-12-22T01:04:15.031691Z",
            "url": "https://files.pythonhosted.org/packages/c2/73/b486c3d1129b3375579eec5fb348ae0070d73092585b71c2ed0be3c619f8/ultralytics-8.3.53.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-22 01:04:15",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "ultralytics",
    "github_project": "ultralytics",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "ultralytics"
}
        
Elapsed time: 0.40684s