ultralytics


Nameultralytics JSON
Version 0.0.24 PyPI version JSON
download
home_pagehttps://github.com/ultralytics/yolov5
Summary
upload_time2022-05-21 16:43:56
maintainer
docs_urlNone
authorUltralytics
requires_python>=3.7.0
license
keywords machine-learning deep-learning ml ai pytorch object-detection vision yolo yolov3 yolov4 yolov5
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <a align="center" href="https://ultralytics.com" target="_blank">
<img width="1024", src="https://user-images.githubusercontent.com/26833433/142024981-979d6214-1520-4c3b-b29b-1bdb3355229d.png"></a>
<br><br>
<div align="center">
   <a href="https://github.com/ultralytics">
   <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-github.png" width="2%"/>
   </a>
   <img width="2%" />
   <a href="https://www.linkedin.com/company/ultralytics">
   <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-linkedin.png" width="2%"/>
   </a>
   <img width="2%" />
   <a href="https://twitter.com/ultralytics">
   <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-twitter.png" width="2%"/>
   </a>
   <img width="2%" />
   <a href="https://youtube.com/ultralytics">
   <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-youtube.png" width="2%"/>
   </a>
   <img width="2%" />
   <a href="https://www.facebook.com/ultralytics">
   <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-facebook.png" width="2%"/>
   </a>
   <img width="2%" />
   <a href="https://www.instagram.com/ultralytics/">
   <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png" width="2%"/>
   </a>
</div>
<br>

👋 Hello from the [Ultralytics](https://ultralytics.com/) Team! We've been working hard these last few months to launch [Ultralytics HUB](https://ultralytics.com/hub), a new web tool for training and deploying all your YOLOv5 🚀 models from one spot!


## 1. Create a Dataset

Ultralytics HUB datasets are just like YOLOv5 🚀 datasets, they use the same structure and the same label formats to keep everything simple. 

When you upload a dataset to Ultralytics HUB, make sure to **place your dataset yaml inside the dataset root directory** as in the example shown below, and then zip for upload to https://hub.ultralytics.com/. Your **dataset yaml, directory and zip** should all share the same name. For example, if your dataset is called 'coco6' as in our example [ultralytics/hub/coco6.zip](https://github.com/ultralytics/hub/blob/master/coco6.zip), then you should have a coco6.yaml inside your coco6/ directory, which should zip to create coco6.zip for upload:

```bash
zip -r coco6.zip coco6
```

The example [coco6.zip](https://github.com/ultralytics/hub/blob/master/coco6.zip) dataset in this repository can be downloaded and unzipped to see exactly how to structure your custom dataset.
<p align="center"><img width="800" src="https://user-images.githubusercontent.com/26833433/141502652-e4b0477c-6c2a-41b3-b21a-b3d1444cdda7.png" title="COCO6" /></p>

The dataset yaml is the same standard YOLOv5 yaml format. See the [YOLOv5 Train Custom Data tutorial](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) for full details.
```yaml
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path:  # dataset root dir (leave empty for HUB)
train: images/train  # train images (relative to 'path') 8 images
val: images/val  # val images (relative to 'path') 8 images
test:  # test images (optional)

# Classes
nc: 80  # number of classes
names: [ 'person', 'bicycle', 'car', ...]
```

After zipping your dataset, sign in to HUB at https://hub.ultralytics.com and click on the Datasets tab. Click 'Upload Dataset' to upload, scan and visualize your new dataset before training new YOLOv5 models on it!

<img width="1200" alt="HUB Dataset Upload" src="https://user-images.githubusercontent.com/26833433/141504055-cf2cb4bf-6045-4957-bf23-d4d2c8a94fae.png">


## 2. Train a Model

Connect to the Ultralytics HUB notebook and signin using your Ultralytics API key to begin training your model. <a href="https://colab.research.google.com/github/ultralytics/hub/blob/master/hub.ipynb" target="_blank"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>


## ❓ Issues

If you are a new Ultralytics HUB user and have questions or comments, you are in the right place! Please click the [New Issue](https://github.com/ultralytics/hub/issues/new/choose) button in the [Issues](https://github.com/ultralytics/hub/issues) tab in this [ultralytics/hub](https://github.com/ultralytics/hub) repo and let us know what we can do to make your life better 😃!

<p align="center"><img width="900" src="https://user-images.githubusercontent.com/26833433/141508090-9d0fee01-e3c5-40e4-a762-7617bfff5d2e.png" title="Raise an Issue" /></p>


<br>
<div align="center">
    <a href="https://github.com/ultralytics">
        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-github.png" width="3%"/>
    </a>
    <img width="3%" />
    <a href="https://www.linkedin.com/company/ultralytics">
        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-linkedin.png" width="3%"/>
    </a>
    <img width="3%" />
    <a href="https://twitter.com/ultralytics">
        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-twitter.png" width="3%"/>
    </a>
    <img width="3%" />
    <a href="https://youtube.com/ultralytics">
        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-youtube.png" width="3%"/>
    </a>
    <img width="3%" />
    <a href="https://www.facebook.com/ultralytics">
        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-facebook.png" width="3%"/>
    </a>
    <img width="3%" />
    <a href="https://www.instagram.com/ultralytics/">
        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png" width="3%"/>
    </a>
</div>

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/ultralytics/yolov5",
    "name": "ultralytics",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.7.0",
    "maintainer_email": "",
    "keywords": "machine-learning,deep-learning,ML,AI,PyTorch,object-detection,vision,YOLO,YOLOv3,YOLOv4,YOLOv5",
    "author": "Ultralytics",
    "author_email": "hello@ultralytics.com",
    "download_url": "https://files.pythonhosted.org/packages/c9/96/dd6d3de4fd6502f9af7992e2363cdc9165447b1f51355f7069d111eb44a9/ultralytics-0.0.24.tar.gz",
    "platform": null,
    "description": "<a align=\"center\" href=\"https://ultralytics.com\" target=\"_blank\">\n<img width=\"1024\", src=\"https://user-images.githubusercontent.com/26833433/142024981-979d6214-1520-4c3b-b29b-1bdb3355229d.png\"></a>\n<br><br>\n<div align=\"center\">\n   <a href=\"https://github.com/ultralytics\">\n   <img src=\"https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-github.png\" width=\"2%\"/>\n   </a>\n   <img width=\"2%\" />\n   <a href=\"https://www.linkedin.com/company/ultralytics\">\n   <img src=\"https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-linkedin.png\" width=\"2%\"/>\n   </a>\n   <img width=\"2%\" />\n   <a href=\"https://twitter.com/ultralytics\">\n   <img src=\"https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-twitter.png\" width=\"2%\"/>\n   </a>\n   <img width=\"2%\" />\n   <a href=\"https://youtube.com/ultralytics\">\n   <img src=\"https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-youtube.png\" width=\"2%\"/>\n   </a>\n   <img width=\"2%\" />\n   <a href=\"https://www.facebook.com/ultralytics\">\n   <img src=\"https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-facebook.png\" width=\"2%\"/>\n   </a>\n   <img width=\"2%\" />\n   <a href=\"https://www.instagram.com/ultralytics/\">\n   <img src=\"https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png\" width=\"2%\"/>\n   </a>\n</div>\n<br>\n\n\ud83d\udc4b Hello from the [Ultralytics](https://ultralytics.com/) Team! We've been working hard these last few months to launch [Ultralytics HUB](https://ultralytics.com/hub), a new web tool for training and deploying all your YOLOv5 \ud83d\ude80 models from one spot!\n\n\n## 1. Create a Dataset\n\nUltralytics HUB datasets are just like YOLOv5 \ud83d\ude80 datasets, they use the same structure and the same label formats to keep everything simple. \n\nWhen you upload a dataset to Ultralytics HUB, make sure to **place your dataset yaml inside the dataset root directory** as in the example shown below, and then zip for upload to https://hub.ultralytics.com/. Your **dataset yaml, directory and zip** should all share the same name. For example, if your dataset is called 'coco6' as in our example [ultralytics/hub/coco6.zip](https://github.com/ultralytics/hub/blob/master/coco6.zip), then you should have a coco6.yaml inside your coco6/ directory, which should zip to create coco6.zip for upload:\n\n```bash\nzip -r coco6.zip coco6\n```\n\nThe example [coco6.zip](https://github.com/ultralytics/hub/blob/master/coco6.zip) dataset in this repository can be downloaded and unzipped to see exactly how to structure your custom dataset.\n<p align=\"center\"><img width=\"800\" src=\"https://user-images.githubusercontent.com/26833433/141502652-e4b0477c-6c2a-41b3-b21a-b3d1444cdda7.png\" title=\"COCO6\" /></p>\n\nThe dataset yaml is the same standard YOLOv5 yaml format. See the [YOLOv5 Train Custom Data tutorial](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) for full details.\n```yaml\n# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]\npath:  # dataset root dir (leave empty for HUB)\ntrain: images/train  # train images (relative to 'path') 8 images\nval: images/val  # val images (relative to 'path') 8 images\ntest:  # test images (optional)\n\n# Classes\nnc: 80  # number of classes\nnames: [ 'person', 'bicycle', 'car', ...]\n```\n\nAfter zipping your dataset, sign in to HUB at https://hub.ultralytics.com and click on the Datasets tab. Click 'Upload Dataset' to upload, scan and visualize your new dataset before training new YOLOv5 models on it!\n\n<img width=\"1200\" alt=\"HUB Dataset Upload\" src=\"https://user-images.githubusercontent.com/26833433/141504055-cf2cb4bf-6045-4957-bf23-d4d2c8a94fae.png\">\n\n\n## 2. Train a Model\n\nConnect to the Ultralytics HUB notebook and signin using your Ultralytics API key to begin training your model. <a href=\"https://colab.research.google.com/github/ultralytics/hub/blob/master/hub.ipynb\" target=\"_blank\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a>\n\n\n## \u2753 Issues\n\nIf you are a new Ultralytics HUB user and have questions or comments, you are in the right place! Please click the [New Issue](https://github.com/ultralytics/hub/issues/new/choose) button in the [Issues](https://github.com/ultralytics/hub/issues) tab in this [ultralytics/hub](https://github.com/ultralytics/hub) repo and let us know what we can do to make your life better \ud83d\ude03!\n\n<p align=\"center\"><img width=\"900\" src=\"https://user-images.githubusercontent.com/26833433/141508090-9d0fee01-e3c5-40e4-a762-7617bfff5d2e.png\" title=\"Raise an Issue\" /></p>\n\n\n<br>\n<div align=\"center\">\n    <a href=\"https://github.com/ultralytics\">\n        <img src=\"https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-github.png\" width=\"3%\"/>\n    </a>\n    <img width=\"3%\" />\n    <a href=\"https://www.linkedin.com/company/ultralytics\">\n        <img src=\"https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-linkedin.png\" width=\"3%\"/>\n    </a>\n    <img width=\"3%\" />\n    <a href=\"https://twitter.com/ultralytics\">\n        <img src=\"https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-twitter.png\" width=\"3%\"/>\n    </a>\n    <img width=\"3%\" />\n    <a href=\"https://youtube.com/ultralytics\">\n        <img src=\"https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-youtube.png\" width=\"3%\"/>\n    </a>\n    <img width=\"3%\" />\n    <a href=\"https://www.facebook.com/ultralytics\">\n        <img src=\"https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-facebook.png\" width=\"3%\"/>\n    </a>\n    <img width=\"3%\" />\n    <a href=\"https://www.instagram.com/ultralytics/\">\n        <img src=\"https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png\" width=\"3%\"/>\n    </a>\n</div>\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "",
    "version": "0.0.24",
    "split_keywords": [
        "machine-learning",
        "deep-learning",
        "ml",
        "ai",
        "pytorch",
        "object-detection",
        "vision",
        "yolo",
        "yolov3",
        "yolov4",
        "yolov5"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "md5": "8c815f83f007296812a31ba846af363f",
                "sha256": "09a3ce8cd0393cede00c770ada85f9ca6ebb3d010e000c7657ba000eb552bddc"
            },
            "downloads": -1,
            "filename": "ultralytics-0.0.24-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "8c815f83f007296812a31ba846af363f",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7.0",
            "size": 15293,
            "upload_time": "2022-05-21T16:43:54",
            "upload_time_iso_8601": "2022-05-21T16:43:54.638746Z",
            "url": "https://files.pythonhosted.org/packages/d9/d9/adb8f8cf6a6a421c0fcea0b5d913e141092c88158dc31d3166fe90addbb4/ultralytics-0.0.24-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "md5": "d41efd42c5345b92e3c2f50d2c763ffa",
                "sha256": "3e33fa654a4354b36d366e5e34e552029e06f7bf94dd9f762746a5d5195575a5"
            },
            "downloads": -1,
            "filename": "ultralytics-0.0.24.tar.gz",
            "has_sig": false,
            "md5_digest": "d41efd42c5345b92e3c2f50d2c763ffa",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7.0",
            "size": 15705,
            "upload_time": "2022-05-21T16:43:56",
            "upload_time_iso_8601": "2022-05-21T16:43:56.329671Z",
            "url": "https://files.pythonhosted.org/packages/c9/96/dd6d3de4fd6502f9af7992e2363cdc9165447b1f51355f7069d111eb44a9/ultralytics-0.0.24.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2022-05-21 16:43:56",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "ultralytics",
    "github_project": "yolov5",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "ultralytics"
}
        
Elapsed time: 0.36653s