#### Get model optimized for RKNN
Exports detection/segment model with optimization for RKNN, please refer here [RKOPT_README.md](RKOPT_README.md). Optimization for exporting model does not affect the training stage
关于如何导出适配 RKNPU 分割/检测 模型,请参考 [RKOPT_README.zh-CN.md](RKOPT_README.zh-CN.md),该优化只在导出模型时生效,训练代码按照原仓库的指引即可。
---
<div align="center">
<p>
<a href="https://ultralytics.com/yolov8" target="_blank">
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png"></a>
</p>
[English](README.md) | [简体中文](README.zh-CN.md)
<br>
<div>
<a href="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml"><img src="https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml/badge.svg" alt="Ultralytics CI"></a>
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv8 Citation"></a>
<a href="https://hub.docker.com/r/ultralytics/ultralytics"><img src="https://img.shields.io/docker/pulls/ultralytics/ultralytics?logo=docker" alt="Docker Pulls"></a>
<br>
<a href="https://console.paperspace.com/github/ultralytics/ultralytics"><img src="https://assets.paperspace.io/img/gradient-badge.svg" alt="Run on Gradient"/></a>
<a href="https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
<a href="https://www.kaggle.com/ultralytics/yolov8"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
</div>
<br>
[Ultralytics](https://ultralytics.com) [YOLOv8](https://github.com/ultralytics/ultralytics) is a cutting-edge, state-of-the-art (SOTA) model that builds upon the success of previous YOLO versions and introduces new features and improvements to further boost performance and flexibility. YOLOv8 is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of object detection and tracking, instance segmentation, image classification and pose estimation tasks.
We hope that the resources here will help you get the most out of YOLOv8. Please browse the YOLOv8 <a href="https://docs.ultralytics.com/">Docs</a> for details, raise an issue on <a href="https://github.com/ultralytics/ultralytics/issues/new/choose">GitHub</a> for support, and join our <a href="https://ultralytics.com/discord">Discord</a> community for questions and discussions!
To request an Enterprise License please complete the form at [Ultralytics Licensing](https://ultralytics.com/license).
<img width="100%" src="https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/yolo-comparison-plots.png"></a>
<div align="center">
<a href="https://github.com/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
<a href="https://www.linkedin.com/company/ultralytics/" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
<a href="https://twitter.com/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
<a href="https://youtube.com/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
<a href="https://www.tiktok.com/@ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
<a href="https://www.instagram.com/ultralytics/" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-instagram.png" width="2%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="2%" alt="" />
<a href="https://ultralytics.com/discord" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/blob/main/social/logo-social-discord.png" width="2%" alt="" /></a>
</div>
</div>
## <div align="center">Documentation</div>
See below for a quickstart installation and usage example, and see the [YOLOv8 Docs](https://docs.ultralytics.com) for full documentation on training, validation, prediction and deployment.
<details open>
<summary>Install</summary>
Pip install the ultralytics package including all [requirements](https://github.com/ultralytics/ultralytics/blob/main/requirements.txt) in a [**Python>=3.8**](https://www.python.org/) environment with [**PyTorch>=1.7**](https://pytorch.org/get-started/locally/).
[![PyPI version](https://badge.fury.io/py/ultralytics.svg)](https://badge.fury.io/py/ultralytics) [![Downloads](https://static.pepy.tech/badge/ultralytics)](https://pepy.tech/project/ultralytics)
```bash
pip install ultralytics
```
For alternative installation methods including [Conda](https://anaconda.org/conda-forge/ultralytics), [Docker](https://hub.docker.com/r/ultralytics/ultralytics), and Git, please refer to the [Quickstart Guide](https://docs.ultralytics.com/quickstart).
</details>
<details open>
<summary>Usage</summary>
#### CLI
YOLOv8 may be used directly in the Command Line Interface (CLI) with a `yolo` command:
```bash
yolo predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg'
```
`yolo` can be used for a variety of tasks and modes and accepts additional arguments, i.e. `imgsz=640`. See the YOLOv8 [CLI Docs](https://docs.ultralytics.com/usage/cli) for examples.
#### Python
YOLOv8 may also be used directly in a Python environment, and accepts the same [arguments](https://docs.ultralytics.com/usage/cfg/) as in the CLI example above:
```python
from ultralytics import YOLO
# Load a model
model = YOLO("yolov8n.yaml") # build a new model from scratch
model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training)
# Use the model
model.train(data="coco128.yaml", epochs=3) # train the model
metrics = model.val() # evaluate model performance on the validation set
results = model("https://ultralytics.com/images/bus.jpg") # predict on an image
path = model.export(format="onnx") # export the model to ONNX format
```
[Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models) download automatically from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases). See YOLOv8 [Python Docs](https://docs.ultralytics.com/usage/python) for more examples.
</details>
## <div align="center">Models</div>
YOLOv8 [Detect](https://docs.ultralytics.com/tasks/detect), [Segment](https://docs.ultralytics.com/tasks/segment) and [Pose](https://docs.ultralytics.com/tasks/pose) models pretrained on the [COCO](https://docs.ultralytics.com/datasets/detect/coco) dataset are available here, as well as YOLOv8 [Classify](https://docs.ultralytics.com/tasks/classify) models pretrained on the [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet) dataset. [Track](https://docs.ultralytics.com/modes/track) mode is available for all Detect, Segment and Pose models.
<img width="1024" src="https://raw.githubusercontent.com/ultralytics/assets/main/im/banner-tasks.png">
All [Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models) download automatically from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases) on first use.
<details open><summary>Detection</summary>
See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examples with these models.
| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
| ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
| [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt) | 640 | 37.3 | 80.4 | 0.99 | 3.2 | 8.7 |
| [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s.pt) | 640 | 44.9 | 128.4 | 1.20 | 11.2 | 28.6 |
| [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m.pt) | 640 | 50.2 | 234.7 | 1.83 | 25.9 | 78.9 |
| [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l.pt) | 640 | 52.9 | 375.2 | 2.39 | 43.7 | 165.2 |
| [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x.pt) | 640 | 53.9 | 479.1 | 3.53 | 68.2 | 257.8 |
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](http://cocodataset.org) dataset.
<br>Reproduce by `yolo val detect data=coco.yaml device=0`
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance.
<br>Reproduce by `yolo val detect data=coco128.yaml batch=1 device=0|cpu`
</details>
<details><summary>Segmentation</summary>
See [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage examples with these models.
| Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
| -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
| [YOLOv8n-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-seg.pt) | 640 | 36.7 | 30.5 | 96.1 | 1.21 | 3.4 | 12.6 |
| [YOLOv8s-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-seg.pt) | 640 | 44.6 | 36.8 | 155.7 | 1.47 | 11.8 | 42.6 |
| [YOLOv8m-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-seg.pt) | 640 | 49.9 | 40.8 | 317.0 | 2.18 | 27.3 | 110.2 |
| [YOLOv8l-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-seg.pt) | 640 | 52.3 | 42.6 | 572.4 | 2.79 | 46.0 | 220.5 |
| [YOLOv8x-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-seg.pt) | 640 | 53.4 | 43.4 | 712.1 | 4.02 | 71.8 | 344.1 |
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](http://cocodataset.org) dataset.
<br>Reproduce by `yolo val segment data=coco.yaml device=0`
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance.
<br>Reproduce by `yolo val segment data=coco128-seg.yaml batch=1 device=0|cpu`
</details>
<details><summary>Classification</summary>
See [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usage examples with these models.
| Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 640 |
| -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
| [YOLOv8n-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-cls.pt) | 224 | 66.6 | 87.0 | 12.9 | 0.31 | 2.7 | 4.3 |
| [YOLOv8s-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-cls.pt) | 224 | 72.3 | 91.1 | 23.4 | 0.35 | 6.4 | 13.5 |
| [YOLOv8m-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-cls.pt) | 224 | 76.4 | 93.2 | 85.4 | 0.62 | 17.0 | 42.7 |
| [YOLOv8l-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-cls.pt) | 224 | 78.0 | 94.1 | 163.0 | 0.87 | 37.5 | 99.7 |
| [YOLOv8x-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-cls.pt) | 224 | 78.4 | 94.3 | 232.0 | 1.01 | 57.4 | 154.8 |
- **acc** values are model accuracies on the [ImageNet](https://www.image-net.org/) dataset validation set.
<br>Reproduce by `yolo val classify data=path/to/ImageNet device=0`
- **Speed** averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance.
<br>Reproduce by `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
</details>
<details><summary>Pose</summary>
See [Pose Docs](https://docs.ultralytics.com/tasks/pose) for usage examples with these models.
| Model | size<br><sup>(pixels) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
| ---------------------------------------------------------------------------------------------------- | --------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
| [YOLOv8n-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-pose.pt) | 640 | 50.4 | 80.1 | 131.8 | 1.18 | 3.3 | 9.2 |
| [YOLOv8s-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-pose.pt) | 640 | 60.0 | 86.2 | 233.2 | 1.42 | 11.6 | 30.2 |
| [YOLOv8m-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-pose.pt) | 640 | 65.0 | 88.8 | 456.3 | 2.00 | 26.4 | 81.0 |
| [YOLOv8l-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-pose.pt) | 640 | 67.6 | 90.0 | 784.5 | 2.59 | 44.4 | 168.6 |
| [YOLOv8x-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-pose.pt) | 640 | 69.2 | 90.2 | 1607.1 | 3.73 | 69.4 | 263.2 |
| [YOLOv8x-pose-p6](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-pose-p6.pt) | 1280 | 71.6 | 91.2 | 4088.7 | 10.04 | 99.1 | 1066.4 |
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO Keypoints val2017](http://cocodataset.org)
dataset.
<br>Reproduce by `yolo val pose data=coco-pose.yaml device=0`
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance.
<br>Reproduce by `yolo val pose data=coco8-pose.yaml batch=1 device=0|cpu`
</details>
## <div align="center">Integrations</div>
Our key integrations with leading AI platforms extend the functionality of Ultralytics' offerings, enhancing tasks like dataset labeling, training, visualization, and model management. Discover how Ultralytics, in collaboration with [Roboflow](https://roboflow.com/?ref=ultralytics), ClearML, [Comet](https://bit.ly/yolov8-readme-comet), Neural Magic and [OpenVINO](https://docs.ultralytics.com/integrations/openvino), can optimize your AI workflow.
<br>
<a href="https://bit.ly/ultralytics_hub" target="_blank">
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/yolov8/banner-integrations.png"></a>
<br>
<br>
<div align="center">
<a href="https://roboflow.com/?ref=ultralytics">
<img src="https://github.com/ultralytics/assets/raw/main/partners/logo-roboflow.png" width="10%" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="" />
<a href="https://cutt.ly/yolov5-readme-clearml">
<img src="https://github.com/ultralytics/assets/raw/main/partners/logo-clearml.png" width="10%" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="" />
<a href="https://bit.ly/yolov8-readme-comet">
<img src="https://github.com/ultralytics/assets/raw/main/partners/logo-comet.png" width="10%" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="15%" height="0" alt="" />
<a href="https://bit.ly/yolov5-neuralmagic">
<img src="https://github.com/ultralytics/assets/raw/main/partners/logo-neuralmagic.png" width="10%" /></a>
</div>
| Roboflow | ClearML ⭐ NEW | Comet ⭐ NEW | Neural Magic ⭐ NEW |
| :--------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------------------------------: |
| Label and export your custom datasets directly to YOLOv8 for training with [Roboflow](https://roboflow.com/?ref=ultralytics) | Automatically track, visualize and even remotely train YOLOv8 using [ClearML](https://cutt.ly/yolov5-readme-clearml) (open-source!) | Free forever, [Comet](https://bit.ly/yolov8-readme-comet) lets you save YOLOv8 models, resume training, and interactively visualize and debug predictions | Run YOLOv8 inference up to 6x faster with [Neural Magic DeepSparse](https://bit.ly/yolov5-neuralmagic) |
## <div align="center">Ultralytics HUB</div>
Experience seamless AI with [Ultralytics HUB](https://bit.ly/ultralytics_hub) ⭐, the all-in-one solution for data visualization, YOLOv5 and YOLOv8 🚀 model training and deployment, without any coding. Transform images into actionable insights and bring your AI visions to life with ease using our cutting-edge platform and user-friendly [Ultralytics App](https://ultralytics.com/app_install). Start your journey for **Free** now!
<a href="https://bit.ly/ultralytics_hub" target="_blank">
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png"></a>
## <div align="center">Contribute</div>
We love your input! YOLOv5 and YOLOv8 would not be possible without help from our community. Please see our [Contributing Guide](https://docs.ultralytics.com/help/contributing) to get started, and fill out our [Survey](https://ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) to send us feedback on your experience. Thank you 🙏 to all our contributors!
<!-- SVG image from https://opencollective.com/ultralytics/contributors.svg?width=990 -->
<a href="https://github.com/ultralytics/yolov5/graphs/contributors">
<img width="100%" src="https://github.com/ultralytics/assets/raw/main/im/image-contributors.png"></a>
## <div align="center">License</div>
Ultralytics offers two licensing options to accommodate diverse use cases:
- **AGPL-3.0 License**: This [OSI-approved](https://opensource.org/licenses/) open-source license is ideal for students and enthusiasts, promoting open collaboration and knowledge sharing. See the [LICENSE](https://github.com/ultralytics/ultralytics/blob/main/LICENSE) file for more details.
- **Enterprise License**: Designed for commercial use, this license permits seamless integration of Ultralytics software and AI models into commercial goods and services, bypassing the open-source requirements of AGPL-3.0. If your scenario involves embedding our solutions into a commercial offering, reach out through [Ultralytics Licensing](https://ultralytics.com/license).
## <div align="center">Contact</div>
For Ultralytics bug reports and feature requests please visit [GitHub Issues](https://github.com/ultralytics/ultralytics/issues), and join our [Discord](https://ultralytics.com/discord) community for questions and discussions!
<br>
<div align="center">
<a href="https://github.com/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="3%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="" />
<a href="https://www.linkedin.com/company/ultralytics/" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="3%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="" />
<a href="https://twitter.com/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="3%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="" />
<a href="https://youtube.com/ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="3%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="" />
<a href="https://www.tiktok.com/@ultralytics" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="3%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="" />
<a href="https://www.instagram.com/ultralytics/" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-instagram.png" width="3%" alt="" /></a>
<img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="" />
<a href="https://ultralytics.com/discord" style="text-decoration:none;">
<img src="https://github.com/ultralytics/assets/blob/main/social/logo-social-discord.png" width="3%" alt="" /></a>
</div>
Raw data
{
"_id": null,
"home_page": "https://github.com/ultralytics/ultralytics",
"name": "ultralytics-rknn",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": null,
"keywords": "machine-learning, deep-learning, vision, ML, DL, AI, YOLO, YOLOv3, YOLOv5, YOLOv8, HUB, Ultralytics",
"author": "Ultralytics",
"author_email": "hello@ultralytics.com",
"download_url": "https://files.pythonhosted.org/packages/7b/57/218a38f527ba5f5487b9f92c1c3570ad91ef4d6fa2e80751bcab89b2ef25/ultralytics_rknn-12.0.1.tar.gz",
"platform": null,
"description": "#### Get model optimized for RKNN\n\nExports detection/segment model with optimization for RKNN, please refer here [RKOPT_README.md](RKOPT_README.md). Optimization for exporting model does not affect the training stage\n\n\u5173\u4e8e\u5982\u4f55\u5bfc\u51fa\u9002\u914d RKNPU \u5206\u5272/\u68c0\u6d4b \u6a21\u578b\uff0c\u8bf7\u53c2\u8003 [RKOPT_README.zh-CN.md](RKOPT_README.zh-CN.md)\uff0c\u8be5\u4f18\u5316\u53ea\u5728\u5bfc\u51fa\u6a21\u578b\u65f6\u751f\u6548\uff0c\u8bad\u7ec3\u4ee3\u7801\u6309\u7167\u539f\u4ed3\u5e93\u7684\u6307\u5f15\u5373\u53ef\u3002\n\n---\n\n<div align=\"center\">\n <p>\n <a href=\"https://ultralytics.com/yolov8\" target=\"_blank\">\n <img width=\"100%\" src=\"https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/banner-yolov8.png\"></a>\n </p>\n\n[English](README.md) | [\u7b80\u4f53\u4e2d\u6587](README.zh-CN.md)\n<br>\n\n<div>\n <a href=\"https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml\"><img src=\"https://github.com/ultralytics/ultralytics/actions/workflows/ci.yaml/badge.svg\" alt=\"Ultralytics CI\"></a>\n <a href=\"https://zenodo.org/badge/latestdoi/264818686\"><img src=\"https://zenodo.org/badge/264818686.svg\" alt=\"YOLOv8 Citation\"></a>\n <a href=\"https://hub.docker.com/r/ultralytics/ultralytics\"><img src=\"https://img.shields.io/docker/pulls/ultralytics/ultralytics?logo=docker\" alt=\"Docker Pulls\"></a>\n <br>\n <a href=\"https://console.paperspace.com/github/ultralytics/ultralytics\"><img src=\"https://assets.paperspace.io/img/gradient-badge.svg\" alt=\"Run on Gradient\"/></a>\n <a href=\"https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a>\n <a href=\"https://www.kaggle.com/ultralytics/yolov8\"><img src=\"https://kaggle.com/static/images/open-in-kaggle.svg\" alt=\"Open In Kaggle\"></a>\n </div>\n <br>\n\n[Ultralytics](https://ultralytics.com) [YOLOv8](https://github.com/ultralytics/ultralytics) is a cutting-edge, state-of-the-art (SOTA) model that builds upon the success of previous YOLO versions and introduces new features and improvements to further boost performance and flexibility. YOLOv8 is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of object detection and tracking, instance segmentation, image classification and pose estimation tasks.\n\nWe hope that the resources here will help you get the most out of YOLOv8. Please browse the YOLOv8 <a href=\"https://docs.ultralytics.com/\">Docs</a> for details, raise an issue on <a href=\"https://github.com/ultralytics/ultralytics/issues/new/choose\">GitHub</a> for support, and join our <a href=\"https://ultralytics.com/discord\">Discord</a> community for questions and discussions!\n\nTo request an Enterprise License please complete the form at [Ultralytics Licensing](https://ultralytics.com/license).\n\n<img width=\"100%\" src=\"https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/yolo-comparison-plots.png\"></a>\n\n<div align=\"center\">\n <a href=\"https://github.com/ultralytics\" style=\"text-decoration:none;\">\n <img src=\"https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png\" width=\"2%\" alt=\"\" /></a>\n <img src=\"https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png\" width=\"2%\" alt=\"\" />\n <a href=\"https://www.linkedin.com/company/ultralytics/\" style=\"text-decoration:none;\">\n <img src=\"https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png\" width=\"2%\" alt=\"\" /></a>\n <img src=\"https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png\" width=\"2%\" alt=\"\" />\n <a href=\"https://twitter.com/ultralytics\" style=\"text-decoration:none;\">\n <img src=\"https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png\" width=\"2%\" alt=\"\" /></a>\n <img src=\"https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png\" width=\"2%\" alt=\"\" />\n <a href=\"https://youtube.com/ultralytics\" style=\"text-decoration:none;\">\n <img src=\"https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png\" width=\"2%\" alt=\"\" /></a>\n <img src=\"https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png\" width=\"2%\" alt=\"\" />\n <a href=\"https://www.tiktok.com/@ultralytics\" style=\"text-decoration:none;\">\n <img src=\"https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png\" width=\"2%\" alt=\"\" /></a>\n <img src=\"https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png\" width=\"2%\" alt=\"\" />\n <a href=\"https://www.instagram.com/ultralytics/\" style=\"text-decoration:none;\">\n <img src=\"https://github.com/ultralytics/assets/raw/main/social/logo-social-instagram.png\" width=\"2%\" alt=\"\" /></a>\n <img src=\"https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png\" width=\"2%\" alt=\"\" />\n <a href=\"https://ultralytics.com/discord\" style=\"text-decoration:none;\">\n <img src=\"https://github.com/ultralytics/assets/blob/main/social/logo-social-discord.png\" width=\"2%\" alt=\"\" /></a>\n</div>\n</div>\n\n## <div align=\"center\">Documentation</div>\n\nSee below for a quickstart installation and usage example, and see the [YOLOv8 Docs](https://docs.ultralytics.com) for full documentation on training, validation, prediction and deployment.\n\n<details open>\n<summary>Install</summary>\n\nPip install the ultralytics package including all [requirements](https://github.com/ultralytics/ultralytics/blob/main/requirements.txt) in a [**Python>=3.8**](https://www.python.org/) environment with [**PyTorch>=1.7**](https://pytorch.org/get-started/locally/).\n\n[![PyPI version](https://badge.fury.io/py/ultralytics.svg)](https://badge.fury.io/py/ultralytics) [![Downloads](https://static.pepy.tech/badge/ultralytics)](https://pepy.tech/project/ultralytics)\n\n```bash\npip install ultralytics\n```\n\nFor alternative installation methods including [Conda](https://anaconda.org/conda-forge/ultralytics), [Docker](https://hub.docker.com/r/ultralytics/ultralytics), and Git, please refer to the [Quickstart Guide](https://docs.ultralytics.com/quickstart).\n\n</details>\n\n<details open>\n<summary>Usage</summary>\n\n#### CLI\n\nYOLOv8 may be used directly in the Command Line Interface (CLI) with a `yolo` command:\n\n```bash\nyolo predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg'\n```\n\n`yolo` can be used for a variety of tasks and modes and accepts additional arguments, i.e. `imgsz=640`. See the YOLOv8 [CLI Docs](https://docs.ultralytics.com/usage/cli) for examples.\n\n#### Python\n\nYOLOv8 may also be used directly in a Python environment, and accepts the same [arguments](https://docs.ultralytics.com/usage/cfg/) as in the CLI example above:\n\n```python\nfrom ultralytics import YOLO\n\n# Load a model\nmodel = YOLO(\"yolov8n.yaml\") # build a new model from scratch\nmodel = YOLO(\"yolov8n.pt\") # load a pretrained model (recommended for training)\n\n# Use the model\nmodel.train(data=\"coco128.yaml\", epochs=3) # train the model\nmetrics = model.val() # evaluate model performance on the validation set\nresults = model(\"https://ultralytics.com/images/bus.jpg\") # predict on an image\npath = model.export(format=\"onnx\") # export the model to ONNX format\n```\n\n[Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models) download automatically from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases). See YOLOv8 [Python Docs](https://docs.ultralytics.com/usage/python) for more examples.\n\n</details>\n\n## <div align=\"center\">Models</div>\n\nYOLOv8 [Detect](https://docs.ultralytics.com/tasks/detect), [Segment](https://docs.ultralytics.com/tasks/segment) and [Pose](https://docs.ultralytics.com/tasks/pose) models pretrained on the [COCO](https://docs.ultralytics.com/datasets/detect/coco) dataset are available here, as well as YOLOv8 [Classify](https://docs.ultralytics.com/tasks/classify) models pretrained on the [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet) dataset. [Track](https://docs.ultralytics.com/modes/track) mode is available for all Detect, Segment and Pose models.\n\n<img width=\"1024\" src=\"https://raw.githubusercontent.com/ultralytics/assets/main/im/banner-tasks.png\">\n\nAll [Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models) download automatically from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases) on first use.\n\n<details open><summary>Detection</summary>\n\nSee [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examples with these models.\n\n| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |\n| ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |\n| [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt) | 640 | 37.3 | 80.4 | 0.99 | 3.2 | 8.7 |\n| [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s.pt) | 640 | 44.9 | 128.4 | 1.20 | 11.2 | 28.6 |\n| [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m.pt) | 640 | 50.2 | 234.7 | 1.83 | 25.9 | 78.9 |\n| [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l.pt) | 640 | 52.9 | 375.2 | 2.39 | 43.7 | 165.2 |\n| [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x.pt) | 640 | 53.9 | 479.1 | 3.53 | 68.2 | 257.8 |\n\n- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](http://cocodataset.org) dataset.\n <br>Reproduce by `yolo val detect data=coco.yaml device=0`\n- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance.\n <br>Reproduce by `yolo val detect data=coco128.yaml batch=1 device=0|cpu`\n\n</details>\n\n<details><summary>Segmentation</summary>\n\nSee [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage examples with these models.\n\n| Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |\n| -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |\n| [YOLOv8n-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-seg.pt) | 640 | 36.7 | 30.5 | 96.1 | 1.21 | 3.4 | 12.6 |\n| [YOLOv8s-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-seg.pt) | 640 | 44.6 | 36.8 | 155.7 | 1.47 | 11.8 | 42.6 |\n| [YOLOv8m-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-seg.pt) | 640 | 49.9 | 40.8 | 317.0 | 2.18 | 27.3 | 110.2 |\n| [YOLOv8l-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-seg.pt) | 640 | 52.3 | 42.6 | 572.4 | 2.79 | 46.0 | 220.5 |\n| [YOLOv8x-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-seg.pt) | 640 | 53.4 | 43.4 | 712.1 | 4.02 | 71.8 | 344.1 |\n\n- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](http://cocodataset.org) dataset.\n <br>Reproduce by `yolo val segment data=coco.yaml device=0`\n- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance.\n <br>Reproduce by `yolo val segment data=coco128-seg.yaml batch=1 device=0|cpu`\n\n</details>\n\n<details><summary>Classification</summary>\n\nSee [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usage examples with these models.\n\n| Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 640 |\n| -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |\n| [YOLOv8n-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-cls.pt) | 224 | 66.6 | 87.0 | 12.9 | 0.31 | 2.7 | 4.3 |\n| [YOLOv8s-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-cls.pt) | 224 | 72.3 | 91.1 | 23.4 | 0.35 | 6.4 | 13.5 |\n| [YOLOv8m-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-cls.pt) | 224 | 76.4 | 93.2 | 85.4 | 0.62 | 17.0 | 42.7 |\n| [YOLOv8l-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-cls.pt) | 224 | 78.0 | 94.1 | 163.0 | 0.87 | 37.5 | 99.7 |\n| [YOLOv8x-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-cls.pt) | 224 | 78.4 | 94.3 | 232.0 | 1.01 | 57.4 | 154.8 |\n\n- **acc** values are model accuracies on the [ImageNet](https://www.image-net.org/) dataset validation set.\n <br>Reproduce by `yolo val classify data=path/to/ImageNet device=0`\n- **Speed** averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance.\n <br>Reproduce by `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`\n\n</details>\n\n<details><summary>Pose</summary>\n\nSee [Pose Docs](https://docs.ultralytics.com/tasks/pose) for usage examples with these models.\n\n| Model | size<br><sup>(pixels) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |\n| ---------------------------------------------------------------------------------------------------- | --------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |\n| [YOLOv8n-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-pose.pt) | 640 | 50.4 | 80.1 | 131.8 | 1.18 | 3.3 | 9.2 |\n| [YOLOv8s-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-pose.pt) | 640 | 60.0 | 86.2 | 233.2 | 1.42 | 11.6 | 30.2 |\n| [YOLOv8m-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-pose.pt) | 640 | 65.0 | 88.8 | 456.3 | 2.00 | 26.4 | 81.0 |\n| [YOLOv8l-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-pose.pt) | 640 | 67.6 | 90.0 | 784.5 | 2.59 | 44.4 | 168.6 |\n| [YOLOv8x-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-pose.pt) | 640 | 69.2 | 90.2 | 1607.1 | 3.73 | 69.4 | 263.2 |\n| [YOLOv8x-pose-p6](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-pose-p6.pt) | 1280 | 71.6 | 91.2 | 4088.7 | 10.04 | 99.1 | 1066.4 |\n\n- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO Keypoints val2017](http://cocodataset.org)\n dataset.\n <br>Reproduce by `yolo val pose data=coco-pose.yaml device=0`\n- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance.\n <br>Reproduce by `yolo val pose data=coco8-pose.yaml batch=1 device=0|cpu`\n\n</details>\n\n## <div align=\"center\">Integrations</div>\n\nOur key integrations with leading AI platforms extend the functionality of Ultralytics' offerings, enhancing tasks like dataset labeling, training, visualization, and model management. Discover how Ultralytics, in collaboration with [Roboflow](https://roboflow.com/?ref=ultralytics), ClearML, [Comet](https://bit.ly/yolov8-readme-comet), Neural Magic and [OpenVINO](https://docs.ultralytics.com/integrations/openvino), can optimize your AI workflow.\n\n<br>\n<a href=\"https://bit.ly/ultralytics_hub\" target=\"_blank\">\n<img width=\"100%\" src=\"https://github.com/ultralytics/assets/raw/main/yolov8/banner-integrations.png\"></a>\n<br>\n<br>\n\n<div align=\"center\">\n <a href=\"https://roboflow.com/?ref=ultralytics\">\n <img src=\"https://github.com/ultralytics/assets/raw/main/partners/logo-roboflow.png\" width=\"10%\" /></a>\n <img src=\"https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png\" width=\"15%\" height=\"0\" alt=\"\" />\n <a href=\"https://cutt.ly/yolov5-readme-clearml\">\n <img src=\"https://github.com/ultralytics/assets/raw/main/partners/logo-clearml.png\" width=\"10%\" /></a>\n <img src=\"https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png\" width=\"15%\" height=\"0\" alt=\"\" />\n <a href=\"https://bit.ly/yolov8-readme-comet\">\n <img src=\"https://github.com/ultralytics/assets/raw/main/partners/logo-comet.png\" width=\"10%\" /></a>\n <img src=\"https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png\" width=\"15%\" height=\"0\" alt=\"\" />\n <a href=\"https://bit.ly/yolov5-neuralmagic\">\n <img src=\"https://github.com/ultralytics/assets/raw/main/partners/logo-neuralmagic.png\" width=\"10%\" /></a>\n</div>\n\n| Roboflow | ClearML \u2b50 NEW | Comet \u2b50 NEW | Neural Magic \u2b50 NEW |\n| :--------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------------------------------: |\n| Label and export your custom datasets directly to YOLOv8 for training with [Roboflow](https://roboflow.com/?ref=ultralytics) | Automatically track, visualize and even remotely train YOLOv8 using [ClearML](https://cutt.ly/yolov5-readme-clearml) (open-source!) | Free forever, [Comet](https://bit.ly/yolov8-readme-comet) lets you save YOLOv8 models, resume training, and interactively visualize and debug predictions | Run YOLOv8 inference up to 6x faster with [Neural Magic DeepSparse](https://bit.ly/yolov5-neuralmagic) |\n\n## <div align=\"center\">Ultralytics HUB</div>\n\nExperience seamless AI with [Ultralytics HUB](https://bit.ly/ultralytics_hub) \u2b50, the all-in-one solution for data visualization, YOLOv5 and YOLOv8 \ud83d\ude80 model training and deployment, without any coding. Transform images into actionable insights and bring your AI visions to life with ease using our cutting-edge platform and user-friendly [Ultralytics App](https://ultralytics.com/app_install). Start your journey for **Free** now!\n\n<a href=\"https://bit.ly/ultralytics_hub\" target=\"_blank\">\n<img width=\"100%\" src=\"https://github.com/ultralytics/assets/raw/main/im/ultralytics-hub.png\"></a>\n\n## <div align=\"center\">Contribute</div>\n\nWe love your input! YOLOv5 and YOLOv8 would not be possible without help from our community. Please see our [Contributing Guide](https://docs.ultralytics.com/help/contributing) to get started, and fill out our [Survey](https://ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) to send us feedback on your experience. Thank you \ud83d\ude4f to all our contributors!\n\n<!-- SVG image from https://opencollective.com/ultralytics/contributors.svg?width=990 -->\n\n<a href=\"https://github.com/ultralytics/yolov5/graphs/contributors\">\n<img width=\"100%\" src=\"https://github.com/ultralytics/assets/raw/main/im/image-contributors.png\"></a>\n\n## <div align=\"center\">License</div>\n\nUltralytics offers two licensing options to accommodate diverse use cases:\n\n- **AGPL-3.0 License**: This [OSI-approved](https://opensource.org/licenses/) open-source license is ideal for students and enthusiasts, promoting open collaboration and knowledge sharing. See the [LICENSE](https://github.com/ultralytics/ultralytics/blob/main/LICENSE) file for more details.\n- **Enterprise License**: Designed for commercial use, this license permits seamless integration of Ultralytics software and AI models into commercial goods and services, bypassing the open-source requirements of AGPL-3.0. If your scenario involves embedding our solutions into a commercial offering, reach out through [Ultralytics Licensing](https://ultralytics.com/license).\n\n## <div align=\"center\">Contact</div>\n\nFor Ultralytics bug reports and feature requests please visit [GitHub Issues](https://github.com/ultralytics/ultralytics/issues), and join our [Discord](https://ultralytics.com/discord) community for questions and discussions!\n\n<br>\n<div align=\"center\">\n <a href=\"https://github.com/ultralytics\" style=\"text-decoration:none;\">\n <img src=\"https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png\" width=\"3%\" alt=\"\" /></a>\n <img src=\"https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png\" width=\"3%\" alt=\"\" />\n <a href=\"https://www.linkedin.com/company/ultralytics/\" style=\"text-decoration:none;\">\n <img src=\"https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png\" width=\"3%\" alt=\"\" /></a>\n <img src=\"https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png\" width=\"3%\" alt=\"\" />\n <a href=\"https://twitter.com/ultralytics\" style=\"text-decoration:none;\">\n <img src=\"https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png\" width=\"3%\" alt=\"\" /></a>\n <img src=\"https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png\" width=\"3%\" alt=\"\" />\n <a href=\"https://youtube.com/ultralytics\" style=\"text-decoration:none;\">\n <img src=\"https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png\" width=\"3%\" alt=\"\" /></a>\n <img src=\"https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png\" width=\"3%\" alt=\"\" />\n <a href=\"https://www.tiktok.com/@ultralytics\" style=\"text-decoration:none;\">\n <img src=\"https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png\" width=\"3%\" alt=\"\" /></a>\n <img src=\"https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png\" width=\"3%\" alt=\"\" />\n <a href=\"https://www.instagram.com/ultralytics/\" style=\"text-decoration:none;\">\n <img src=\"https://github.com/ultralytics/assets/raw/main/social/logo-social-instagram.png\" width=\"3%\" alt=\"\" /></a>\n <img src=\"https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png\" width=\"3%\" alt=\"\" />\n <a href=\"https://ultralytics.com/discord\" style=\"text-decoration:none;\">\n <img src=\"https://github.com/ultralytics/assets/blob/main/social/logo-social-discord.png\" width=\"3%\" alt=\"\" /></a>\n</div>\n",
"bugtrack_url": null,
"license": "AGPL-3.0",
"summary": "Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.",
"version": "12.0.1",
"project_urls": {
"Bug Reports": "https://github.com/ultralytics/ultralytics/issues",
"Funding": "https://ultralytics.com",
"Homepage": "https://github.com/ultralytics/ultralytics",
"Source": "https://github.com/ultralytics/ultralytics"
},
"split_keywords": [
"machine-learning",
" deep-learning",
" vision",
" ml",
" dl",
" ai",
" yolo",
" yolov3",
" yolov5",
" yolov8",
" hub",
" ultralytics"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "7274a65181a2e88e79e7a15ae4e7e14f199b49aaac053dafc2b9af913b601f2f",
"md5": "512381a3eee512003ce9d462540cb35c",
"sha256": "9dda9580fef20efc608cb7e6f7f654f46b0a8db5cc29fb5be2f0f43d2302c0dd"
},
"downloads": -1,
"filename": "ultralytics_rknn-12.0.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "512381a3eee512003ce9d462540cb35c",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7",
"size": 624300,
"upload_time": "2024-07-10T12:11:01",
"upload_time_iso_8601": "2024-07-10T12:11:01.086135Z",
"url": "https://files.pythonhosted.org/packages/72/74/a65181a2e88e79e7a15ae4e7e14f199b49aaac053dafc2b9af913b601f2f/ultralytics_rknn-12.0.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "7b57218a38f527ba5f5487b9f92c1c3570ad91ef4d6fa2e80751bcab89b2ef25",
"md5": "57856f31e576f757a7594d4890cbb88b",
"sha256": "6e01b1be5103fcf97e8c78c5032e5aceb129c6f11da23f48088832943356070c"
},
"downloads": -1,
"filename": "ultralytics_rknn-12.0.1.tar.gz",
"has_sig": false,
"md5_digest": "57856f31e576f757a7594d4890cbb88b",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 557518,
"upload_time": "2024-07-10T12:11:04",
"upload_time_iso_8601": "2024-07-10T12:11:04.892993Z",
"url": "https://files.pythonhosted.org/packages/7b/57/218a38f527ba5f5487b9f92c1c3570ad91ef4d6fa2e80751bcab89b2ef25/ultralytics_rknn-12.0.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-07-10 12:11:04",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "ultralytics",
"github_project": "ultralytics",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "ultralytics-rknn"
}