ultralyticsplus


Nameultralyticsplus JSON
Version 0.1.0 PyPI version JSON
download
home_page
SummaryHuggingFace utilities for Ultralytics/YOLOv8.
upload_time2024-02-03 20:02:13
maintainer
docs_urlNone
author
requires_python>=3.7
licenseMIT
keywords machine-learning deep-learning ml vision yolov8 object-detection huggingface datasets
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # ultralytics+

Extra features for [ultralytics/ultralytics](https://github.com/ultralytics/ultralytics).

## installation

```bash
pip install ultralyticsplus
```

## push to 🤗 hub

```bash
ultralyticsplus --exp_dir runs/detect/train --hf_model_id HF_USERNAME/MODELNAME
```

## load from 🤗 hub

```python
from ultralyticsplus import YOLO, render_result

# load model
model = YOLO('HF_USERNAME/MODELNAME')

# set model parameters
model.overrides['conf'] = 0.25  # NMS confidence threshold
model.overrides['iou'] = 0.45  # NMS IoU threshold
model.overrides['agnostic_nms'] = False  # NMS class-agnostic
model.overrides['max_det'] = 1000  # maximum number of detections per image

# set image
image = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'

# perform inference
results = model.predict(image, imgsz=640)

# parse results
result = results[0]
boxes = result.boxes.xyxy # x1, y1, x2, y2
scores = result.boxes.conf
categories = result.boxes.cls
scores = result.probs # for classification models
masks = result.masks # for segmentation models

# show results on image
render = render_result(model=model, image=image, result=result)
render.show()
```

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "ultralyticsplus",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": "",
    "keywords": "machine-learning,deep-learning,ml,vision,yolov8,object-detection,huggingface,datasets",
    "author": "",
    "author_email": "",
    "download_url": "https://files.pythonhosted.org/packages/3f/bb/87c1c17ddc930fe1adbea4720b197e5230ce38d0d3f3bf6d0ce6f9e70ad7/ultralyticsplus-0.1.0.tar.gz",
    "platform": null,
    "description": "# ultralytics+\n\nExtra features for [ultralytics/ultralytics](https://github.com/ultralytics/ultralytics).\n\n## installation\n\n```bash\npip install ultralyticsplus\n```\n\n## push to \ud83e\udd17 hub\n\n```bash\nultralyticsplus --exp_dir runs/detect/train --hf_model_id HF_USERNAME/MODELNAME\n```\n\n## load from \ud83e\udd17 hub\n\n```python\nfrom ultralyticsplus import YOLO, render_result\n\n# load model\nmodel = YOLO('HF_USERNAME/MODELNAME')\n\n# set model parameters\nmodel.overrides['conf'] = 0.25  # NMS confidence threshold\nmodel.overrides['iou'] = 0.45  # NMS IoU threshold\nmodel.overrides['agnostic_nms'] = False  # NMS class-agnostic\nmodel.overrides['max_det'] = 1000  # maximum number of detections per image\n\n# set image\nimage = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'\n\n# perform inference\nresults = model.predict(image, imgsz=640)\n\n# parse results\nresult = results[0]\nboxes = result.boxes.xyxy # x1, y1, x2, y2\nscores = result.boxes.conf\ncategories = result.boxes.cls\nscores = result.probs # for classification models\nmasks = result.masks # for segmentation models\n\n# show results on image\nrender = render_result(model=model, image=image, result=result)\nrender.show()\n```\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "HuggingFace utilities for Ultralytics/YOLOv8.",
    "version": "0.1.0",
    "project_urls": null,
    "split_keywords": [
        "machine-learning",
        "deep-learning",
        "ml",
        "vision",
        "yolov8",
        "object-detection",
        "huggingface",
        "datasets"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "276cff87519141c81e7a4b47c0fa8831e5e4100cf4f3c2db940f159219e30e59",
                "md5": "16709699367db82e953f329ba69a1605",
                "sha256": "26275c16ba638d9fc5357b2dcf508e4477bd0031ed096d9892670717326e2f92"
            },
            "downloads": -1,
            "filename": "ultralyticsplus-0.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "16709699367db82e953f329ba69a1605",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 23925,
            "upload_time": "2024-02-03T20:02:12",
            "upload_time_iso_8601": "2024-02-03T20:02:12.238174Z",
            "url": "https://files.pythonhosted.org/packages/27/6c/ff87519141c81e7a4b47c0fa8831e5e4100cf4f3c2db940f159219e30e59/ultralyticsplus-0.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3fbb87c1c17ddc930fe1adbea4720b197e5230ce38d0d3f3bf6d0ce6f9e70ad7",
                "md5": "5f049deb99b631a51e1377b4c4105da7",
                "sha256": "c3e0fdff06bd331a92ccb774ee709da80d4f040caf7c1fa2b4d994918e9b0418"
            },
            "downloads": -1,
            "filename": "ultralyticsplus-0.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "5f049deb99b631a51e1377b4c4105da7",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 25449,
            "upload_time": "2024-02-03T20:02:13",
            "upload_time_iso_8601": "2024-02-03T20:02:13.564958Z",
            "url": "https://files.pythonhosted.org/packages/3f/bb/87c1c17ddc930fe1adbea4720b197e5230ce38d0d3f3bf6d0ce6f9e70ad7/ultralyticsplus-0.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-02-03 20:02:13",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "ultralyticsplus"
}
        
Elapsed time: 0.18931s