# UnifyML
[🌐 **Homepage**](https://github.com/holl-/UnifyML)
[📖 **Documentation**](https://holl-.github.io/UnifyML/)
[🔗 **API**](https://holl-.github.io/UnifyML/unifyml)
• [**▶ Videos**]()
• [<img src="https://www.tensorflow.org/images/colab_logo_32px.png" height=16>](https://colab.research.google.com/github/holl-/UnifyML/blob/main/docs/Examples.ipynb) [**Examples**](https://holl-.github.io/UnifyML/Examples.html)
UnifyML provides a unified math and neural network API for Jax, PyTorch, TensorFlow and NumPy.
See the [installation Instructions](https://holl-.github.io/UnifyML/Installation_Instructions.html) on how to compile the optional custom CUDA operations.
```python
from jax import numpy as jnp
import torch
import tensorflow as tf
import numpy as np
from unifyml import math
math.sin(1.)
math.sin(jnp.asarray([1.]))
math.sin(torch.tensor([1.]))
math.sin(tf.constant([1.]))
math.sin(np.asarray([1.]))
```
**Compatibility**
* Writing code that works with PyTorch, Jax, and TensorFlow makes it easier to share code with other people and collaborate.
* Your published research code will reach a broader audience.
* When you run into a bug / roadblock with one library, you can simply switch to another.
* UnifyML can efficiently [convert tensors between ML libraries](https://holl-.github.io/UnifyML/Convert.html) on-the-fly, so you can even mix the different ecosystems.
**Fewer mistakes**
* *No more data type troubles*: UnifyML [automatically converts data types](https://holl-.github.io/UnifyML/Data_Types.html) where needed and lets you specify the [FP precision globally or by context](https://holl-.github.io/UnifyML/Data_Types.html#Precision)!
* *No more reshaping troubles*: UnifyML performs [reshaping under-the-hood.](https://holl-.github.io/UnifyML/Shapes.html)
* *Is `neighbor_idx.at[jnp.reshape(idx, (-1,))].set(jnp.reshape(cell_idx, (-1,) + cell_idx.shape[-2:]))` correct?*: UnifyML provides a custom Tensor class that lets you write [easy-to-read, more concise, more explicit, less error-prone code](https://holl-.github.io/UnifyML/Tensors.html).
**Unique features**
* **n-dimensional operations**: With UnifyML, you can write code that [automatically works in 1D, 2D and 3D](https://holl-.github.io/UnifyML/N_Dimensional.html), choosing the corresponding operations based on the input dimensions.
* **Preconditioned linear solves**: UnifyML can [build sparse matrices from your Python functions](https://holl-.github.io/UnifyML/Matrices.html) and run linear solvers [with preconditioners](https://holl-.github.io/UnifyML/Linear_Solves.html).
* **Flexible neural network architectures**: [UnifyML provides various configurable neural network architectures, from MLPs to U-Nets.](https://holl-.github.io/UnifyML/Networks.html)
* **Non-uniform tensors**: UnifyML allows you to [stack tensors of different sizes and keeps track of the resulting shapes](https://holl-.github.io/UnifyML/Non_Uniform.html).
Raw data
{
"_id": null,
"home_page": "https://github.com/holl-/UnifyML",
"name": "unifyml",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "Machine Learning,Deep Learning,Math,Linear systems,Sparse,Tensor,Named dimensions",
"author": "Philipp Holl",
"author_email": "philipp.holl@tum.de",
"download_url": "https://files.pythonhosted.org/packages/48/60/957f7e8e3c91c712f9ce91d2cae027ec04cedfaac6adf14c9d4b94450b46/unifyml-0.0.2.tar.gz",
"platform": null,
"description": "# UnifyML\n\n[\ud83c\udf10 **Homepage**](https://github.com/holl-/UnifyML)\n [\ud83d\udcd6 **Documentation**](https://holl-.github.io/UnifyML/)\n [\ud83d\udd17 **API**](https://holl-.github.io/UnifyML/unifyml)\n \u2022 [**\u25b6 Videos**]()\n \u2022 [<img src=\"https://www.tensorflow.org/images/colab_logo_32px.png\" height=16>](https://colab.research.google.com/github/holl-/UnifyML/blob/main/docs/Examples.ipynb) [**Examples**](https://holl-.github.io/UnifyML/Examples.html)\n\nUnifyML provides a unified math and neural network API for Jax, PyTorch, TensorFlow and NumPy.\n\nSee the [installation Instructions](https://holl-.github.io/UnifyML/Installation_Instructions.html) on how to compile the optional custom CUDA operations.\n\n```python\nfrom jax import numpy as jnp\nimport torch\nimport tensorflow as tf\nimport numpy as np\n\nfrom unifyml import math\n\nmath.sin(1.)\nmath.sin(jnp.asarray([1.]))\nmath.sin(torch.tensor([1.]))\nmath.sin(tf.constant([1.]))\nmath.sin(np.asarray([1.]))\n```\n\n\n\n**Compatibility**\n\n* Writing code that works with PyTorch, Jax, and TensorFlow makes it easier to share code with other people and collaborate.\n* Your published research code will reach a broader audience.\n* When you run into a bug / roadblock with one library, you can simply switch to another.\n* UnifyML can efficiently [convert tensors between ML libraries](https://holl-.github.io/UnifyML/Convert.html) on-the-fly, so you can even mix the different ecosystems.\n\n\n**Fewer mistakes**\n\n* *No more data type troubles*: UnifyML [automatically converts data types](https://holl-.github.io/UnifyML/Data_Types.html) where needed and lets you specify the [FP precision globally or by context](https://holl-.github.io/UnifyML/Data_Types.html#Precision)!\n* *No more reshaping troubles*: UnifyML performs [reshaping under-the-hood.](https://holl-.github.io/UnifyML/Shapes.html)\n* *Is `neighbor_idx.at[jnp.reshape(idx, (-1,))].set(jnp.reshape(cell_idx, (-1,) + cell_idx.shape[-2:]))` correct?*: UnifyML provides a custom Tensor class that lets you write [easy-to-read, more concise, more explicit, less error-prone code](https://holl-.github.io/UnifyML/Tensors.html).\n\n**Unique features**\n\n* **n-dimensional operations**: With UnifyML, you can write code that [automatically works in 1D, 2D and 3D](https://holl-.github.io/UnifyML/N_Dimensional.html), choosing the corresponding operations based on the input dimensions.\n* **Preconditioned linear solves**: UnifyML can [build sparse matrices from your Python functions](https://holl-.github.io/UnifyML/Matrices.html) and run linear solvers [with preconditioners](https://holl-.github.io/UnifyML/Linear_Solves.html).\n* **Flexible neural network architectures**: [UnifyML provides various configurable neural network architectures, from MLPs to U-Nets.](https://holl-.github.io/UnifyML/Networks.html)\n* **Non-uniform tensors**: UnifyML allows you to [stack tensors of different sizes and keeps track of the resulting shapes](https://holl-.github.io/UnifyML/Non_Uniform.html).",
"bugtrack_url": null,
"license": "MIT",
"summary": "Unified API for machine learning",
"version": "0.0.2",
"project_urls": {
"Download": "https://github.com/holl-/UnifyML/archive/0.0.2.tar.gz",
"Homepage": "https://github.com/holl-/UnifyML"
},
"split_keywords": [
"machine learning",
"deep learning",
"math",
"linear systems",
"sparse",
"tensor",
"named dimensions"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "4860957f7e8e3c91c712f9ce91d2cae027ec04cedfaac6adf14c9d4b94450b46",
"md5": "60ff614cd6bd22571efe59b5018555a0",
"sha256": "11cab85fc23a5ec9c5038a5e106fc4511dce3c3a55a5f95290d2631669622e2e"
},
"downloads": -1,
"filename": "unifyml-0.0.2.tar.gz",
"has_sig": false,
"md5_digest": "60ff614cd6bd22571efe59b5018555a0",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 249651,
"upload_time": "2023-06-16T14:57:28",
"upload_time_iso_8601": "2023-06-16T14:57:28.118869Z",
"url": "https://files.pythonhosted.org/packages/48/60/957f7e8e3c91c712f9ce91d2cae027ec04cedfaac6adf14c9d4b94450b46/unifyml-0.0.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-06-16 14:57:28",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "holl-",
"github_project": "UnifyML",
"github_not_found": true,
"lcname": "unifyml"
}