unpythonic


Nameunpythonic JSON
Version 0.15.2 PyPI version JSON
download
home_pagehttps://github.com/Technologicat/unpythonic
SummarySupercharge your Python with parts of Lisp and Haskell.
upload_time2024-09-19 11:57:51
maintainerNone
docs_urlNone
authorJuha Jeronen
requires_python<3.11,>=3.6
licenseBSD
keywords functional-programming language-extension syntactic-macros tail-call-optimization tco continuations currying lazy-evaluation dynamic-variable macros lisp scheme racket haskell
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Unpythonic: Python meets Lisp and Haskell

In the spirit of [toolz](https://github.com/pytoolz/toolz), we provide missing features for Python, mainly from the list processing tradition, but with some Haskellisms mixed in. We extend the language with a set of [syntactic macros](https://en.wikipedia.org/wiki/Macro_(computer_science)#Syntactic_macros). We also provide an in-process, background [REPL](https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop) server for live inspection and hot-patching. The emphasis is on **clear, pythonic syntax**, **making features work together**, and **obsessive correctness**.

![100% Python](https://img.shields.io/github/languages/top/Technologicat/unpythonic) ![supported language versions](https://img.shields.io/pypi/pyversions/unpythonic) ![supported implementations](https://img.shields.io/pypi/implementation/unpythonic) ![CI status](https://img.shields.io/github/workflow/status/Technologicat/unpythonic/Python%20package) [![codecov](https://codecov.io/gh/Technologicat/unpythonic/branch/master/graph/badge.svg)](https://codecov.io/gh/Technologicat/unpythonic)  
![version on PyPI](https://img.shields.io/pypi/v/unpythonic) ![PyPI package format](https://img.shields.io/pypi/format/unpythonic) ![dependency status](https://img.shields.io/librariesio/github/Technologicat/unpythonic)  
![license: BSD](https://img.shields.io/pypi/l/unpythonic) ![open issues](https://img.shields.io/github/issues/Technologicat/unpythonic) [![PRs welcome](https://img.shields.io/badge/PRs-welcome-brightgreen)](http://makeapullrequest.com/)

*Some hypertext features of this README, such as local links to detailed documentation, and expandable example highlights, are not supported when viewed on PyPI; [view on GitHub](https://github.com/Technologicat/unpythonic) to have those work properly.*


### Dependencies

None required.

 - [`mcpyrate`](https://github.com/Technologicat/mcpyrate) optional, to enable the syntactic macro layer, an interactive macro REPL, and some example dialects.

The 0.15.x series should run on CPython 3.6, 3.7, 3.8, 3.9 and 3.10, and PyPy3 (language versions 3.6, 3.7 and 3.8); the [CI](https://en.wikipedia.org/wiki/Continuous_integration) process verifies the tests pass on those platforms. [Long-term support roadmap](https://github.com/Technologicat/unpythonic/issues/1).


### Documentation

- **README**: you are here.
- [Pure-Python feature set](doc/features.md)
- [Syntactic macro feature set](doc/macros.md)
- [Examples of creating dialects using `mcpyrate`](doc/dialects.md): Python the way you want it.
- [REPL server](doc/repl.md): interactively hot-patch your running Python program.
- [Troubleshooting](doc/troubleshooting.md): possible solutions to possibly common issues.
- [Design notes](doc/design-notes.md): for more insight into the design choices of ``unpythonic``.
- [Essays](doc/essays.md): for writings on the philosophy of ``unpythonic``, things that inspired it, and related discoveries.
- [Additional reading](doc/readings.md): links to material relevant in the context of ``unpythonic``.
- [Contribution guidelines](CONTRIBUTING.md): for understanding the codebase, or if you're interested in making a code or documentation PR.

The features of `unpythonic` are built out of, in increasing order of [magic](https://macropy3.readthedocs.io/en/latest/discussion.html#levels-of-magic):

 - Pure Python (e.g. batteries for `itertools`),
 - Macros driving a pure-Python core (`do`, `let`),
 - Pure macros (e.g. `continuations`, `lazify`, `dbg`).
 - Whole-module transformations, a.k.a. dialects (e.g. `Lispy`).

This depends on the purpose of each feature, as well as ease-of-use considerations. See the design notes for more information.


### Examples

Small, limited-space overview of the overall flavor. There is a lot more that does not fit here, especially in the pure-Python feature set. We give here simple examples that are **not** necessarily of the most general form supported by the constructs. See the [full documentation](doc/features.md) and [unit tests](unpythonic/tests/) for more examples.

#### Unpythonic in 30 seconds: Pure Python

<details><summary>Loop functionally, with tail call optimization.</summary>

[[docs](doc/features.md#looped-looped_over-loops-in-fp-style-with-tco)]

```python
from unpythonic import looped, looped_over

@looped
def result(loop, acc=0, i=0):
    if i == 10:
        return acc
    else:
        return loop(acc + i, i + 1)  # tail call optimized, no call stack blowup.
assert result == 45

@looped_over(range(3), acc=[])
def result(loop, i, acc):
    acc.append(lambda x: i * x)  # fresh "i" each time, no mutation of loop counter.
    return loop()
assert [f(10) for f in result] == [0, 10, 20]
```
</details>  
<details><summary>Introduce dynamic variables.</summary>

[[docs](doc/features.md#dyn-dynamic-assignment)]

```python
from unpythonic import dyn, make_dynvar

make_dynvar(x=42)  # set a default value

def f():
    assert dyn.x == 17
    with dyn.let(x=23):
        assert dyn.x == 23
        g()
    assert dyn.x == 17

def g():
    assert dyn.x == 23

assert dyn.x == 42
with dyn.let(x=17):
    assert dyn.x == 17
    f()
assert dyn.x == 42
```
</details>  
<details><summary>Interactively hot-patch your running Python program.</summary>

[[docs](doc/repl.md)]

To opt in, add just two lines of code to your main program:

```python
from unpythonic.net import server
server.start(locals={})  # automatically daemonic

import time

def main():
    while True:
        time.sleep(1)

if __name__ == '__main__':
    main()
```

Or if you just want to take this for a test run, start the built-in demo app:

```bash
python3 -m unpythonic.net.server
```

Once a server is running, to connect:

```bash
python3 -m unpythonic.net.client 127.0.0.1
```

This gives you a REPL, inside your live process, with all the power of Python. You can `importlib.reload` any module, and through `sys.modules`, inspect or overwrite any name at the top level of any module. You can `pickle.dump` your data. Or do anything you want with/to the live state of your app.

You can have multiple REPL sessions connected simultaneously. When your app exits (for any reason), the server automatically shuts down, closing all connections if any remain. But exiting the client leaves the server running, so you can connect again later - that's the whole point.

Optionally, if you have [mcpyrate](https://github.com/Technologicat/mcpyrate), the REPL sessions support importing, invoking and defining macros.
</details>  
<details><summary>Industrial-strength scan and fold.</summary>

[[docs](doc/features.md#batteries-for-itertools)]

Scan and fold accept multiple iterables, like in Racket.

```python
from operator import add
from unpythonic import scanl, foldl, unfold, take, Values

assert tuple(scanl(add, 0, range(1, 5))) == (0, 1, 3, 6, 10)

def op(e1, e2, acc):
    return acc + e1 * e2
assert foldl(op, 0, (1, 2), (3, 4)) == 11

def nextfibo(a, b):
    return Values(a, a=b, b=a + b)
assert tuple(take(10, unfold(nextfibo, 1, 1))) == (1, 1, 2, 3, 5, 8, 13, 21, 34, 55)
```
</details>  
<details><summary>Industrial-strength curry.</summary>

[[docs](doc/features.md#batteries-for-functools)]

We bind arguments to parameters like Python itself does, so it does not matter whether arguments are passed by position or by name during currying. We support `@generic` multiple-dispatch functions.

We also feature a Haskell-inspired passthrough system: any args and kwargs that are not accepted by the call signature will be passed through. This is useful when a curried function returns a new function, which is then the target for the passthrough. See the docs for details.

```python
from unpythonic import curry, generic, foldr, composerc, cons, nil, ll

@curry
def f(x, y):
    return x, y

assert f(1, 2) == (1, 2)
assert f(1)(2) == (1, 2)
assert f(1)(y=2) == (1, 2)
assert f(y=2)(x=1) == (1, 2)

@curry
def add3(x, y, z):
    return x + y + z

# actually uses partial application so these work, too
assert add3(1)(2)(3) == 6
assert add3(1, 2)(3) == 6
assert add3(1)(2, 3) == 6
assert add3(1, 2, 3) == 6

@curry
def lispyadd(*args):
    return sum(args)
assert lispyadd() == 0  # no args is a valid arity here

@generic
def g(x: int, y: int):
    return "int"
@generic
def g(x: float, y: float):
    return "float"
@generic
def g(s: str):
    return "str"
g = curry(g)

assert callable(g(1))
assert g(1)(2) == "int"

assert callable(g(1.0))
assert g(1.0)(2.0) == "float"

assert g("cat") == "str"
assert g(s="cat") == "str"

# simple example of passthrough
mymap = lambda f: curry(foldr, composerc(cons, f), nil)
myadd = lambda a, b: a + b
assert curry(mymap, myadd, ll(1, 2, 3), ll(2, 4, 6)) == ll(3, 6, 9)
```
</details>
<details><summary>Multiple-dispatch generic functions, like in CLOS or Julia.</summary>

[[docs](doc/features.md#generic-typed-isoftype-multiple-dispatch)]

```python
from unpythonic import generic

@generic
def my_range(stop: int):  # create the generic function and the first multimethod
    return my_range(0, 1, stop)
@generic
def my_range(start: int, stop: int):  # further registrations add more multimethods
    return my_range(start, 1, stop)
@generic
def my_range(start: int, step: int, stop: int):
    return start, step, stop
```

This is a purely run-time implementation, so it does **not** give performance benefits, but it can make code more readable, and makes it modular to add support for new input types (or different call signatures) to an existing function later.

[*Holy traits*](https://ahsmart.com/pub/holy-traits-design-patterns-and-best-practice-book/) are also a possibility:

```python
import typing
from unpythonic import generic, augment

class FunninessTrait:
    pass
class IsFunny(FunninessTrait):
    pass
class IsNotFunny(FunninessTrait):
    pass

@generic
def funny(x: typing.Any):  # default
    raise NotImplementedError(f"`funny` trait not registered for anything matching {type(x)}")

@augment(funny)
def funny(x: str):  # noqa: F811
    return IsFunny()
@augment(funny)
def funny(x: int):  # noqa: F811
    return IsNotFunny()

@generic
def laugh(x: typing.Any):
    return laugh(funny(x), x)

@augment(laugh)
def laugh(traitvalue: IsFunny, x: typing.Any):
    return f"Ha ha ha, {x} is funny!"
@augment(laugh)
def laugh(traitvalue: IsNotFunny, x: typing.Any):
    return f"{x} is not funny."

assert laugh("that") == "Ha ha ha, that is funny!"
assert laugh(42) == "42 is not funny."
```
</details>  
<details><summary>Conditions: resumable, modular error handling, like in Common Lisp.</summary>

[[docs](doc/features.md#handlers-restarts-conditions-and-restarts)]

Contrived example:

```python
from unpythonic import error, restarts, handlers, invoke, use_value, unbox

class MyError(ValueError):
    def __init__(self, value):  # We want to act on the value, so save it.
        self.value = value

def lowlevel(lst):
    _drop = object()  # gensym/nonce
    out = []
    for k in lst:
        # Provide several different error recovery strategies.
        with restarts(use_value=(lambda x: x),
                      halve=(lambda x: x // 2),
                      drop=(lambda: _drop)) as result:
            if k > 9000:
                error(MyError(k))
            # This is reached when no error occurs.
            # `result` is a box, send k into it.
            result << k
        # Now the result box contains either k,
        # or the return value of one of the restarts.
        r = unbox(result)  # get the value from the box
        if r is not _drop:
            out.append(r)
    return out

def highlevel():
    # Choose which error recovery strategy to use...
    with handlers((MyError, lambda c: use_value(c.value))):
        assert lowlevel([17, 10000, 23, 42]) == [17, 10000, 23, 42]

    # ...on a per-use-site basis...
    with handlers((MyError, lambda c: invoke("halve", c.value))):
        assert lowlevel([17, 10000, 23, 42]) == [17, 5000, 23, 42]

    # ...without changing the low-level code.
    with handlers((MyError, lambda: invoke("drop"))):
        assert lowlevel([17, 10000, 23, 42]) == [17, 23, 42]

highlevel()
```

Conditions only shine in larger systems, with restarts set up at multiple levels of the call stack; this example is too small to demonstrate that. The single-level case here could be implemented as a error-handling mode parameter for the example's only low-level function.

With multiple levels, it becomes apparent that this mode parameter must be threaded through the API at each level, unless it is stored as a dynamic variable (see [`unpythonic.dyn`](doc/features.md#dyn-dynamic-assignment)). But then, there can be several types of errors, and the error-handling mode parameters - one for each error type - have to be shepherded in an intricate manner. A stack is needed, so that an inner level may temporarily override the handler for a particular error type...

The condition system is the clean, general solution to this problem. It automatically scopes handlers to their dynamic extent, and manages the handler stack automatically. In other words, it dynamically binds error-handling modes (for several types of errors, if desired) in a controlled, easily understood manner. The local programmability (i.e. the fact that a handler is not just a restart name, but an arbitrary function) is a bonus for additional flexibility.

If this sounds a lot like an exception system, that's because conditions are the supercharged sister of exceptions. The condition model cleanly separates mechanism from policy, while otherwise remaining similar to the exception model.
</details>  
<details><summary>Lispy symbol type.</summary>

[[docs](doc/features.md#sym-gensym-Singleton-symbols-and-singletons)]

Roughly, a [symbol](https://stackoverflow.com/questions/8846628/what-exactly-is-a-symbol-in-lisp-scheme) is a guaranteed-[interned](https://en.wikipedia.org/wiki/String_interning) string.

A [gensym](http://clhs.lisp.se/Body/f_gensym.htm) is a guaranteed-*unique* string, which is useful as a nonce value. It's similar to the pythonic idiom `nonce = object()`, but with a nice repr, and object-identity-preserving pickle support.

```python
from unpythonic import sym  # lispy symbol
sandwich = sym("sandwich")
hamburger = sym("sandwich")  # symbol's identity is determined by its name, only
assert hamburger is sandwich

assert str(sandwich) == "sandwich"  # symbols have a nice str()
assert repr(sandwich) == 'sym("sandwich")'  # and eval-able repr()
assert eval(repr(sandwich)) is sandwich

from pickle import dumps, loads
pickled_sandwich = dumps(sandwich)
unpickled_sandwich = loads(pickled_sandwich)
assert unpickled_sandwich is sandwich  # symbols survive a pickle roundtrip

from unpythonic import gensym  # gensym: make new uninterned symbol
tabby = gensym("cat")
scottishfold = gensym("cat")
assert tabby is not scottishfold

pickled_tabby = dumps(tabby)
unpickled_tabby = loads(pickled_tabby)
assert unpickled_tabby is tabby  # also gensyms survive a pickle roundtrip
```
</details>  
<details><summary>Lispy data structures.</summary>

[[docs for `box`](doc/features.md#box-a-mutable-single-item-container)] [[docs for `cons`](doc/features.md#cons-and-friends-pythonic-lispy-linked-lists)] [[docs for `frozendict`](doc/features.md#frozendict-an-immutable-dictionary)]

```python
from unpythonic import box, unbox  # mutable single-item container
cat = object()
cardboardbox = box(cat)
assert cardboardbox is not cat  # the box is not the cat
assert unbox(cardboardbox) is cat  # but the cat is inside the box
assert cat in cardboardbox  # ...also syntactically
dog = object()
cardboardbox << dog  # hey, it's my box! (replace contents)
assert unbox(cardboardbox) is dog

from unpythonic import cons, nil, ll, llist  # lispy linked lists
lst = cons(1, cons(2, cons(3, nil)))
assert ll(1, 2, 3) == lst  # make linked list out of elements
assert llist([1, 2, 3]) == lst  # convert iterable to linked list

from unpythonic import frozendict  # immutable dictionary
d1 = frozendict({'a': 1, 'b': 2})
d2 = frozendict(d1, c=3, a=4)
assert d1 == frozendict({'a': 1, 'b': 2})
assert d2 == frozendict({'a': 4, 'b': 2, 'c': 3})
```
</details>
<details><summary>Allow a lambda to call itself. Name a lambda.</summary>

[[docs for `withself`](doc/features.md#batteries-for-functools)] [[docs for `namelambda`](doc/features.md#namelambda-rename-a-function)]

```python
from unpythonic import withself, namelambda

fact = withself(lambda self, n: n * self(n - 1) if n > 1 else 1)  # see @trampolined to do this with TCO
assert fact(5) == 120

square = namelambda("square")(lambda x: x**2)
assert square.__name__ == "square"
assert square.__qualname__ == "square"  # or e.g. "somefunc.<locals>.square" if inside a function
assert square.__code__.co_name == "square"  # used by stack traces
```
</details>  
<details><summary>Break infinite recursion cycles.</summary>

[[docs](doc/features.md#fix-break-infinite-recursion-cycles)]

```python
from typing import NoReturn
from unpythonic import fix

@fix()
def a(k):
    return b((k + 1) % 3)
@fix()
def b(k):
    return a((k + 1) % 3)
assert a(0) is NoReturn
```
</details>  
<details><summary>Build number sequences by example. Slice general iterables.</summary>

[[docs for `s`](doc/features.md#s-m-mg-lazy-mathematical-sequences-with-infix-arithmetic)] [[docs for `islice`](doc/features.md#islice-slice-syntax-support-for-itertoolsislice)]

```python
from unpythonic import s, islice

seq = s(1, 2, 4, ...)
assert tuple(islice(seq)[:10]) == (1, 2, 4, 8, 16, 32, 64, 128, 256, 512)
```
</details>  
<details><summary>Memoize functions and generators.</summary>

[[docs for `memoize`](doc/features.md#batteries-for-functools)] [[docs for `gmemoize`](doc/features.md#gmemoize-imemoize-fimemoize-memoize-generators)]

```python
from itertools import count, takewhile
from unpythonic import memoize, gmemoize, islice

ncalls = 0
@memoize  # <-- important part
def square(x):
    global ncalls
    ncalls += 1
    return x**2
assert square(2) == 4
assert ncalls == 1
assert square(3) == 9
assert ncalls == 2
assert square(3) == 9
assert ncalls == 2  # called only once for each unique set of arguments

# "memoize lambda": classic evaluate-at-most-once thunk
thunk = memoize(lambda: print("hi from thunk"))
thunk()  # the message is printed only the first time
thunk()

@gmemoize  # <-- important part
def primes():  # FP sieve of Eratosthenes
    yield 2
    for n in count(start=3, step=2):
        if not any(n % p == 0 for p in takewhile(lambda x: x*x <= n, primes())):
            yield n

assert tuple(islice(primes())[:10]) == (2, 3, 5, 7, 11, 13, 17, 19, 23, 29)
```
</details>  
<details><summary>Functional updates.</summary>

[[docs](doc/features.md#fup-functional-update-shadowedsequence)]

```python
from itertools import repeat
from unpythonic import fup

t = (1, 2, 3, 4, 5)
s = fup(t)[0::2] << repeat(10)
assert s == (10, 2, 10, 4, 10)
assert t == (1, 2, 3, 4, 5)

from itertools import count
from unpythonic import imemoize
t = (1, 2, 3, 4, 5)
s = fup(t)[::-2] << imemoize(count(start=10))()
assert s == (12, 2, 11, 4, 10)
assert t == (1, 2, 3, 4, 5)
```
</details>  
<details><summary>Live list slices.</summary>

[[docs](doc/features.md#view-writable-sliceable-view-into-a-sequence)]

```python
from unpythonic import view

lst = list(range(10))
v = view(lst)[::2]  # [0, 2, 4, 6, 8]
v[2:4] = (10, 20)  # re-slicable, still live.
assert lst == [0, 1, 2, 3, 10, 5, 20, 7, 8, 9]

lst[2] = 42
assert v == [0, 42, 10, 20, 8]
```
</details>  
<details><summary>Pipes: method chaining syntax for regular functions.</summary>

[[docs](doc/features.md#pipe-piped-lazy_piped-sequence-functions)]

```python
from unpythonic import piped, exitpipe

double = lambda x: 2 * x
inc    = lambda x: x + 1
x = piped(42) | double | inc | exitpipe
assert x == 85
```

The point is usability: in a function composition using pipe syntax, data flows from left to right.
</details>


#### Unpythonic in 30 seconds: Language extensions with macros

<details><summary>unpythonic.test.fixtures: a minimalistic test framework for macro-enabled Python.</summary>

[[docs](doc/macros.md#unpythonictestfixtures-a-test-framework-for-macro-enabled-python)]

```python
from unpythonic.syntax import macros, test, test_raises, fail, error, warn, the
from unpythonic.test.fixtures import session, testset, terminate, returns_normally

def f():
    raise RuntimeError("argh!")

def g(a, b):
    return a * b
    fail["this line should be unreachable"]

count = 0
def counter():
    global count
    count += 1
    return count

with session("simple framework demo"):
    with testset():
        test[2 + 2 == 4]
        test_raises[RuntimeError, f()]
        test[returns_normally(g(2, 3))]
        test[g(2, 3) == 6]
        # Use `the[]` (or several) in a `test[]` to declare what you want to inspect if the test fails.
        # Implicit `the[]`: in comparison, the LHS; otherwise the whole expression. Used if no explicit `the[]`.
        test[the[counter()] < the[counter()]]

    with testset("outer"):
        with testset("inner 1"):
            test[g(6, 7) == 42]
        with testset("inner 2"):
            test[None is None]
        with testset("inner 3"):  # an empty testset is considered 100% passed.
            pass
        with testset("inner 4"):
            warn["This testset not implemented yet"]

    with testset("integration"):
        try:
            import blargly
        except ImportError:
            error["blargly not installed, cannot test integration with it."]
        else:
            ... # blargly integration tests go here

    with testset(postproc=terminate):
        test[2 * 2 == 5]  # fails, terminating the nearest dynamically enclosing `with session`
        test[2 * 2 == 4]  # not reached
```

We provide the low-level syntactic constructs `test[]`, `test_raises[]` and `test_signals[]`, with the usual meanings. The last one is for testing code that uses conditions and restarts; see `unpythonic.conditions`.

The test macros also come in block variants, `with test`, `with test_raises`, `with test_signals`.

As usual in test frameworks, the testing constructs behave somewhat like `assert`, with the difference that a failure or error will not abort the whole unit (unless explicitly asked to do so).
</details>
<details><summary>let: expression-local variables.</summary>

[[docs](doc/macros.md#let-letseq-letrec-as-macros)]

```python
from unpythonic.syntax import macros, let, letseq, letrec

x = let[[a << 1, b << 2] in a + b]
y = letseq[[c << 1,  # LET SEQuential, like Scheme's let*
            c << 2 * c,
            c << 2 * c] in
           c]
z = letrec[[evenp << (lambda x: (x == 0) or oddp(x - 1)),  # LET mutually RECursive, like in Scheme
            oddp << (lambda x: (x != 0) and evenp(x - 1))]
           in evenp(42)]
```
</details>  
<details><summary>let-over-lambda: stateful functions.</summary>

[[docs](doc/macros.md#dlet-dletseq-dletrec-blet-bletseq-bletrec-decorator-versions)]

```python
from unpythonic.syntax import macros, dlet

# Up to Python 3.8, use `@dlet(x << 0)` instead
@dlet[x << 0]  # let-over-lambda for Python
def count():
    return x << x + 1  # `name << value` rebinds in the let env
assert count() == 1
assert count() == 2
```
</details>  
<details><summary>do: code imperatively in any expression position.</summary>

[[docs](doc/macros.md#do-as-a-macro-stuff-imperative-code-into-an-expression-with-style)]

```python
from unpythonic.syntax import macros, do, local, delete

x = do[local[a << 21],
       local[b << 2 * a],
       print(b),
       delete[b],  # do[] local variables can be deleted, too
       4 * a]
assert x == 84
```
</details>  
<details><summary>Automatically apply tail call optimization (TCO), à la Scheme/Racket.</summary>

[[docs](doc/macros.md#tco-automatic-tail-call-optimization-for-python)]

```python
from unpythonic.syntax import macros, tco

with tco:
    # expressions are automatically analyzed to detect tail position.
    evenp = lambda x: (x == 0) or oddp(x - 1)
    oddp  = lambda x: (x != 0) and evenp(x - 1)
    assert evenp(10000) is True
```
</details>  
<details><summary>Curry automatically, à la Haskell.</summary>

[[docs](doc/macros.md#autocurry-automatic-currying-for-python)]

```python
from unpythonic.syntax import macros, autocurry
from unpythonic import foldr, composerc as compose, cons, nil, ll

with autocurry:
    def add3(a, b, c):
        return a + b + c
    assert add3(1)(2)(3) == 6

    mymap = lambda f: foldr(compose(cons, f), nil)
    double = lambda x: 2 * x
    assert mymap(double, (1, 2, 3)) == ll(2, 4, 6)
```
</details>  
<details><summary>Lazy functions, a.k.a. call-by-need.</summary>

[[docs](doc/macros.md#lazify-call-by-need-for-python)]

```python
from unpythonic.syntax import macros, lazify

with lazify:
    def my_if(p, a, b):
        if p:
            return a  # b never evaluated in this code path
        else:
            return b  # a never evaluated in this code path
    assert my_if(True, 23, 1/0) == 23
    assert my_if(False, 1/0, 42) == 42
```
</details>  
<details><summary>Genuine multi-shot continuations (call/cc).</summary>

[[docs](doc/macros.md#continuations-callcc-for-python)]

```python
from unpythonic.syntax import macros, continuations, call_cc

with continuations:  # enables also TCO automatically
    # McCarthy's amb() operator
    stack = []
    def amb(lst, cc):
        if not lst:
            return fail()
        first, *rest = tuple(lst)
        if rest:
            remaining_part_of_computation = cc
            stack.append(lambda: amb(rest, cc=remaining_part_of_computation))
        return first
    def fail():
        if stack:
            f = stack.pop()
            return f()

    # Pythagorean triples using amb()
    def pt():
        z = call_cc[amb(range(1, 21))]  # capture continuation, auto-populate cc arg
        y = call_cc[amb(range(1, z+1))]
        x = call_cc[amb(range(1, y+1))]
        if x*x + y*y != z*z:
            return fail()
        return x, y, z
    t = pt()
    while t:
        print(t)
        t = fail()  # note pt() has already returned when we call this.
```
</details>


#### Unpythonic in 30 seconds: Language extensions with dialects

The [dialects subsystem of `mcpyrate`](https://github.com/Technologicat/mcpyrate/blob/master/doc/dialects.md) makes Python into a language platform, à la [Racket](https://racket-lang.org/). We provide some example dialects based on `unpythonic`'s macro layer. See [documentation](doc/dialects.md).

<details><summary>Lispython: automatic TCO and an implicit return statement.</summary>

[[docs](doc/dialects/lispython.md)]

Also comes with automatically named, multi-expression lambdas.

```python
from unpythonic.dialects import dialects, Lispython  # noqa: F401

def factorial(n):
    def f(k, acc):
        if k == 1:
            return acc
        f(k - 1, k * acc)
    f(n, acc=1)
assert factorial(4) == 24
factorial(5000)  # no crash

square = lambda x: x**2
assert square(3) == 9
assert square.__name__ == "square"

# - brackets denote a multiple-expression lambda body
#   (if you want to have one expression that is a literal list,
#    double the brackets: `lambda x: [[5 * x]]`)
# - local[name << value] makes an expression-local variable
g = lambda x: [local[y << 2 * x],
               y + 1]
assert g(10) == 21
```
</details>  
<details><summary>Pytkell: Automatic currying and implicitly lazy functions.</summary>

[[docs](doc/dialects/pytkell.md)]

```python
from unpythonic.dialects import dialects, Pytkell  # noqa: F401

from operator import add, mul

def addfirst2(a, b, c):
    return a + b
assert addfirst2(1)(2)(1 / 0) == 3

assert tuple(scanl(add, 0, (1, 2, 3))) == (0, 1, 3, 6)
assert tuple(scanr(add, 0, (1, 2, 3))) == (0, 3, 5, 6)

my_sum = foldl(add, 0)
my_prod = foldl(mul, 1)
my_map = lambda f: foldr(compose(cons, f), nil)
assert my_sum(range(1, 5)) == 10
assert my_prod(range(1, 5)) == 24
double = lambda x: 2 * x
assert my_map(double, (1, 2, 3)) == ll(2, 4, 6)
```
</details>  
<details><summary>Listhell: Prefix syntax for function calls, and automatic currying.</summary>

[[docs](doc/dialects/listhell.md)]

```python
from unpythonic.dialects import dialects, Listhell  # noqa: F401

from operator import add, mul
from unpythonic import foldl, foldr, cons, nil, ll

(print, "hello from Listhell")

my_sum = (foldl, add, 0)
my_prod = (foldl, mul, 1)
my_map = lambda f: (foldr, (compose, cons, f), nil)
assert (my_sum, (range, 1, 5)) == 10
assert (my_prod, (range, 1, 5)) == 24
double = lambda x: 2 * x
assert (my_map, double, (q, 1, 2, 3)) == (ll, 2, 4, 6)
```
</details>

## Installation

**PyPI**

``pip3 install unpythonic --user``

or

``sudo pip3 install unpythonic``

**GitHub**

Clone (or pull) from GitHub. Then,

``python3 setup.py install --user``

or

``sudo python3 setup.py install``

**Uninstall**

Uninstallation must be invoked in a folder which has no subfolder called ``unpythonic``, so that ``pip`` recognizes it as a package name (instead of a filename). Then,

``pip3 uninstall unpythonic``

or

``sudo pip3 uninstall unpythonic``


## Support

Not working as advertised? Missing a feature? Documentation needs improvement?

In case of a problem, see [Troubleshooting](doc/troubleshooting.md) first. Then:

**[Issue reports](https://github.com/Technologicat/unpythonic/issues) and [pull requests](https://github.com/Technologicat/unpythonic/pulls) are welcome.** [Contribution guidelines](CONTRIBUTING.md).

While `unpythonic` is intended as a serious tool for improving productivity as well as for teaching, right now my work priorities mean that it's developed and maintained on whatever time I can spare for it. Thus getting a response may take a while, depending on which project I happen to be working on.


## License

All original code is released under the 2-clause [BSD license](LICENSE.md).

For sources and licenses of fragments originally seen on the internet, see [AUTHORS](AUTHORS.md).


## Acknowledgements

Thanks to [TUT](http://www.tut.fi/en/home) for letting me teach [RAK-19006 in spring term 2018](https://github.com/Technologicat/python-3-scicomp-intro); early versions of parts of this library were originally developed as teaching examples for that course. Thanks to @AgenttiX for early feedback.


## Relevant reading

Links to blog posts, online articles and papers on topics relevant in the context of `unpythonic` have been collected to [a separate document](doc/readings.md).

If you like both FP and numerics, we have [some examples](unpythonic/tests/test_fpnumerics.py) based on various internet sources.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/Technologicat/unpythonic",
    "name": "unpythonic",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<3.11,>=3.6",
    "maintainer_email": null,
    "keywords": "functional-programming, language-extension, syntactic-macros, tail-call-optimization, tco, continuations, currying, lazy-evaluation, dynamic-variable, macros, lisp, scheme, racket, haskell",
    "author": "Juha Jeronen",
    "author_email": "juha.m.jeronen@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/60/e9/e1b1514766a53607b1f2ab73b46483a7292561350db77fb12e9ac785197f/unpythonic-0.15.2.tar.gz",
    "platform": "Linux",
    "description": "# Unpythonic: Python meets Lisp and Haskell\n\nIn the spirit of [toolz](https://github.com/pytoolz/toolz), we provide missing features for Python, mainly from the list processing tradition, but with some Haskellisms mixed in. We extend the language with a set of [syntactic macros](https://en.wikipedia.org/wiki/Macro_(computer_science)#Syntactic_macros). We also provide an in-process, background [REPL](https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop) server for live inspection and hot-patching. The emphasis is on **clear, pythonic syntax**, **making features work together**, and **obsessive correctness**.\n\n![100% Python](https://img.shields.io/github/languages/top/Technologicat/unpythonic) ![supported language versions](https://img.shields.io/pypi/pyversions/unpythonic) ![supported implementations](https://img.shields.io/pypi/implementation/unpythonic) ![CI status](https://img.shields.io/github/workflow/status/Technologicat/unpythonic/Python%20package) [![codecov](https://codecov.io/gh/Technologicat/unpythonic/branch/master/graph/badge.svg)](https://codecov.io/gh/Technologicat/unpythonic)  \n![version on PyPI](https://img.shields.io/pypi/v/unpythonic) ![PyPI package format](https://img.shields.io/pypi/format/unpythonic) ![dependency status](https://img.shields.io/librariesio/github/Technologicat/unpythonic)  \n![license: BSD](https://img.shields.io/pypi/l/unpythonic) ![open issues](https://img.shields.io/github/issues/Technologicat/unpythonic) [![PRs welcome](https://img.shields.io/badge/PRs-welcome-brightgreen)](http://makeapullrequest.com/)\n\n*Some hypertext features of this README, such as local links to detailed documentation, and expandable example highlights, are not supported when viewed on PyPI; [view on GitHub](https://github.com/Technologicat/unpythonic) to have those work properly.*\n\n\n### Dependencies\n\nNone required.\n\n - [`mcpyrate`](https://github.com/Technologicat/mcpyrate) optional, to enable the syntactic macro layer, an interactive macro REPL, and some example dialects.\n\nThe 0.15.x series should run on CPython 3.6, 3.7, 3.8, 3.9 and 3.10, and PyPy3 (language versions 3.6, 3.7 and 3.8); the [CI](https://en.wikipedia.org/wiki/Continuous_integration) process verifies the tests pass on those platforms. [Long-term support roadmap](https://github.com/Technologicat/unpythonic/issues/1).\n\n\n### Documentation\n\n- **README**: you are here.\n- [Pure-Python feature set](doc/features.md)\n- [Syntactic macro feature set](doc/macros.md)\n- [Examples of creating dialects using `mcpyrate`](doc/dialects.md): Python the way you want it.\n- [REPL server](doc/repl.md): interactively hot-patch your running Python program.\n- [Troubleshooting](doc/troubleshooting.md): possible solutions to possibly common issues.\n- [Design notes](doc/design-notes.md): for more insight into the design choices of ``unpythonic``.\n- [Essays](doc/essays.md): for writings on the philosophy of ``unpythonic``, things that inspired it, and related discoveries.\n- [Additional reading](doc/readings.md): links to material relevant in the context of ``unpythonic``.\n- [Contribution guidelines](CONTRIBUTING.md): for understanding the codebase, or if you're interested in making a code or documentation PR.\n\nThe features of `unpythonic` are built out of, in increasing order of [magic](https://macropy3.readthedocs.io/en/latest/discussion.html#levels-of-magic):\n\n - Pure Python (e.g. batteries for `itertools`),\n - Macros driving a pure-Python core (`do`, `let`),\n - Pure macros (e.g. `continuations`, `lazify`, `dbg`).\n - Whole-module transformations, a.k.a. dialects (e.g. `Lispy`).\n\nThis depends on the purpose of each feature, as well as ease-of-use considerations. See the design notes for more information.\n\n\n### Examples\n\nSmall, limited-space overview of the overall flavor. There is a lot more that does not fit here, especially in the pure-Python feature set. We give here simple examples that are **not** necessarily of the most general form supported by the constructs. See the [full documentation](doc/features.md) and [unit tests](unpythonic/tests/) for more examples.\n\n#### Unpythonic in 30 seconds: Pure Python\n\n<details><summary>Loop functionally, with tail call optimization.</summary>\n\n[[docs](doc/features.md#looped-looped_over-loops-in-fp-style-with-tco)]\n\n```python\nfrom unpythonic import looped, looped_over\n\n@looped\ndef result(loop, acc=0, i=0):\n    if i == 10:\n        return acc\n    else:\n        return loop(acc + i, i + 1)  # tail call optimized, no call stack blowup.\nassert result == 45\n\n@looped_over(range(3), acc=[])\ndef result(loop, i, acc):\n    acc.append(lambda x: i * x)  # fresh \"i\" each time, no mutation of loop counter.\n    return loop()\nassert [f(10) for f in result] == [0, 10, 20]\n```\n</details>  \n<details><summary>Introduce dynamic variables.</summary>\n\n[[docs](doc/features.md#dyn-dynamic-assignment)]\n\n```python\nfrom unpythonic import dyn, make_dynvar\n\nmake_dynvar(x=42)  # set a default value\n\ndef f():\n    assert dyn.x == 17\n    with dyn.let(x=23):\n        assert dyn.x == 23\n        g()\n    assert dyn.x == 17\n\ndef g():\n    assert dyn.x == 23\n\nassert dyn.x == 42\nwith dyn.let(x=17):\n    assert dyn.x == 17\n    f()\nassert dyn.x == 42\n```\n</details>  \n<details><summary>Interactively hot-patch your running Python program.</summary>\n\n[[docs](doc/repl.md)]\n\nTo opt in, add just two lines of code to your main program:\n\n```python\nfrom unpythonic.net import server\nserver.start(locals={})  # automatically daemonic\n\nimport time\n\ndef main():\n    while True:\n        time.sleep(1)\n\nif __name__ == '__main__':\n    main()\n```\n\nOr if you just want to take this for a test run, start the built-in demo app:\n\n```bash\npython3 -m unpythonic.net.server\n```\n\nOnce a server is running, to connect:\n\n```bash\npython3 -m unpythonic.net.client 127.0.0.1\n```\n\nThis gives you a REPL, inside your live process, with all the power of Python. You can `importlib.reload` any module, and through `sys.modules`, inspect or overwrite any name at the top level of any module. You can `pickle.dump` your data. Or do anything you want with/to the live state of your app.\n\nYou can have multiple REPL sessions connected simultaneously. When your app exits (for any reason), the server automatically shuts down, closing all connections if any remain. But exiting the client leaves the server running, so you can connect again later - that's the whole point.\n\nOptionally, if you have [mcpyrate](https://github.com/Technologicat/mcpyrate), the REPL sessions support importing, invoking and defining macros.\n</details>  \n<details><summary>Industrial-strength scan and fold.</summary>\n\n[[docs](doc/features.md#batteries-for-itertools)]\n\nScan and fold accept multiple iterables, like in Racket.\n\n```python\nfrom operator import add\nfrom unpythonic import scanl, foldl, unfold, take, Values\n\nassert tuple(scanl(add, 0, range(1, 5))) == (0, 1, 3, 6, 10)\n\ndef op(e1, e2, acc):\n    return acc + e1 * e2\nassert foldl(op, 0, (1, 2), (3, 4)) == 11\n\ndef nextfibo(a, b):\n    return Values(a, a=b, b=a + b)\nassert tuple(take(10, unfold(nextfibo, 1, 1))) == (1, 1, 2, 3, 5, 8, 13, 21, 34, 55)\n```\n</details>  \n<details><summary>Industrial-strength curry.</summary>\n\n[[docs](doc/features.md#batteries-for-functools)]\n\nWe bind arguments to parameters like Python itself does, so it does not matter whether arguments are passed by position or by name during currying. We support `@generic` multiple-dispatch functions.\n\nWe also feature a Haskell-inspired passthrough system: any args and kwargs that are not accepted by the call signature will be passed through. This is useful when a curried function returns a new function, which is then the target for the passthrough. See the docs for details.\n\n```python\nfrom unpythonic import curry, generic, foldr, composerc, cons, nil, ll\n\n@curry\ndef f(x, y):\n    return x, y\n\nassert f(1, 2) == (1, 2)\nassert f(1)(2) == (1, 2)\nassert f(1)(y=2) == (1, 2)\nassert f(y=2)(x=1) == (1, 2)\n\n@curry\ndef add3(x, y, z):\n    return x + y + z\n\n# actually uses partial application so these work, too\nassert add3(1)(2)(3) == 6\nassert add3(1, 2)(3) == 6\nassert add3(1)(2, 3) == 6\nassert add3(1, 2, 3) == 6\n\n@curry\ndef lispyadd(*args):\n    return sum(args)\nassert lispyadd() == 0  # no args is a valid arity here\n\n@generic\ndef g(x: int, y: int):\n    return \"int\"\n@generic\ndef g(x: float, y: float):\n    return \"float\"\n@generic\ndef g(s: str):\n    return \"str\"\ng = curry(g)\n\nassert callable(g(1))\nassert g(1)(2) == \"int\"\n\nassert callable(g(1.0))\nassert g(1.0)(2.0) == \"float\"\n\nassert g(\"cat\") == \"str\"\nassert g(s=\"cat\") == \"str\"\n\n# simple example of passthrough\nmymap = lambda f: curry(foldr, composerc(cons, f), nil)\nmyadd = lambda a, b: a + b\nassert curry(mymap, myadd, ll(1, 2, 3), ll(2, 4, 6)) == ll(3, 6, 9)\n```\n</details>\n<details><summary>Multiple-dispatch generic functions, like in CLOS or Julia.</summary>\n\n[[docs](doc/features.md#generic-typed-isoftype-multiple-dispatch)]\n\n```python\nfrom unpythonic import generic\n\n@generic\ndef my_range(stop: int):  # create the generic function and the first multimethod\n    return my_range(0, 1, stop)\n@generic\ndef my_range(start: int, stop: int):  # further registrations add more multimethods\n    return my_range(start, 1, stop)\n@generic\ndef my_range(start: int, step: int, stop: int):\n    return start, step, stop\n```\n\nThis is a purely run-time implementation, so it does **not** give performance benefits, but it can make code more readable, and makes it modular to add support for new input types (or different call signatures) to an existing function later.\n\n[*Holy traits*](https://ahsmart.com/pub/holy-traits-design-patterns-and-best-practice-book/) are also a possibility:\n\n```python\nimport typing\nfrom unpythonic import generic, augment\n\nclass FunninessTrait:\n    pass\nclass IsFunny(FunninessTrait):\n    pass\nclass IsNotFunny(FunninessTrait):\n    pass\n\n@generic\ndef funny(x: typing.Any):  # default\n    raise NotImplementedError(f\"`funny` trait not registered for anything matching {type(x)}\")\n\n@augment(funny)\ndef funny(x: str):  # noqa: F811\n    return IsFunny()\n@augment(funny)\ndef funny(x: int):  # noqa: F811\n    return IsNotFunny()\n\n@generic\ndef laugh(x: typing.Any):\n    return laugh(funny(x), x)\n\n@augment(laugh)\ndef laugh(traitvalue: IsFunny, x: typing.Any):\n    return f\"Ha ha ha, {x} is funny!\"\n@augment(laugh)\ndef laugh(traitvalue: IsNotFunny, x: typing.Any):\n    return f\"{x} is not funny.\"\n\nassert laugh(\"that\") == \"Ha ha ha, that is funny!\"\nassert laugh(42) == \"42 is not funny.\"\n```\n</details>  \n<details><summary>Conditions: resumable, modular error handling, like in Common Lisp.</summary>\n\n[[docs](doc/features.md#handlers-restarts-conditions-and-restarts)]\n\nContrived example:\n\n```python\nfrom unpythonic import error, restarts, handlers, invoke, use_value, unbox\n\nclass MyError(ValueError):\n    def __init__(self, value):  # We want to act on the value, so save it.\n        self.value = value\n\ndef lowlevel(lst):\n    _drop = object()  # gensym/nonce\n    out = []\n    for k in lst:\n        # Provide several different error recovery strategies.\n        with restarts(use_value=(lambda x: x),\n                      halve=(lambda x: x // 2),\n                      drop=(lambda: _drop)) as result:\n            if k > 9000:\n                error(MyError(k))\n            # This is reached when no error occurs.\n            # `result` is a box, send k into it.\n            result << k\n        # Now the result box contains either k,\n        # or the return value of one of the restarts.\n        r = unbox(result)  # get the value from the box\n        if r is not _drop:\n            out.append(r)\n    return out\n\ndef highlevel():\n    # Choose which error recovery strategy to use...\n    with handlers((MyError, lambda c: use_value(c.value))):\n        assert lowlevel([17, 10000, 23, 42]) == [17, 10000, 23, 42]\n\n    # ...on a per-use-site basis...\n    with handlers((MyError, lambda c: invoke(\"halve\", c.value))):\n        assert lowlevel([17, 10000, 23, 42]) == [17, 5000, 23, 42]\n\n    # ...without changing the low-level code.\n    with handlers((MyError, lambda: invoke(\"drop\"))):\n        assert lowlevel([17, 10000, 23, 42]) == [17, 23, 42]\n\nhighlevel()\n```\n\nConditions only shine in larger systems, with restarts set up at multiple levels of the call stack; this example is too small to demonstrate that. The single-level case here could be implemented as a error-handling mode parameter for the example's only low-level function.\n\nWith multiple levels, it becomes apparent that this mode parameter must be threaded through the API at each level, unless it is stored as a dynamic variable (see [`unpythonic.dyn`](doc/features.md#dyn-dynamic-assignment)). But then, there can be several types of errors, and the error-handling mode parameters - one for each error type - have to be shepherded in an intricate manner. A stack is needed, so that an inner level may temporarily override the handler for a particular error type...\n\nThe condition system is the clean, general solution to this problem. It automatically scopes handlers to their dynamic extent, and manages the handler stack automatically. In other words, it dynamically binds error-handling modes (for several types of errors, if desired) in a controlled, easily understood manner. The local programmability (i.e. the fact that a handler is not just a restart name, but an arbitrary function) is a bonus for additional flexibility.\n\nIf this sounds a lot like an exception system, that's because conditions are the supercharged sister of exceptions. The condition model cleanly separates mechanism from policy, while otherwise remaining similar to the exception model.\n</details>  \n<details><summary>Lispy symbol type.</summary>\n\n[[docs](doc/features.md#sym-gensym-Singleton-symbols-and-singletons)]\n\nRoughly, a [symbol](https://stackoverflow.com/questions/8846628/what-exactly-is-a-symbol-in-lisp-scheme) is a guaranteed-[interned](https://en.wikipedia.org/wiki/String_interning) string.\n\nA [gensym](http://clhs.lisp.se/Body/f_gensym.htm) is a guaranteed-*unique* string, which is useful as a nonce value. It's similar to the pythonic idiom `nonce = object()`, but with a nice repr, and object-identity-preserving pickle support.\n\n```python\nfrom unpythonic import sym  # lispy symbol\nsandwich = sym(\"sandwich\")\nhamburger = sym(\"sandwich\")  # symbol's identity is determined by its name, only\nassert hamburger is sandwich\n\nassert str(sandwich) == \"sandwich\"  # symbols have a nice str()\nassert repr(sandwich) == 'sym(\"sandwich\")'  # and eval-able repr()\nassert eval(repr(sandwich)) is sandwich\n\nfrom pickle import dumps, loads\npickled_sandwich = dumps(sandwich)\nunpickled_sandwich = loads(pickled_sandwich)\nassert unpickled_sandwich is sandwich  # symbols survive a pickle roundtrip\n\nfrom unpythonic import gensym  # gensym: make new uninterned symbol\ntabby = gensym(\"cat\")\nscottishfold = gensym(\"cat\")\nassert tabby is not scottishfold\n\npickled_tabby = dumps(tabby)\nunpickled_tabby = loads(pickled_tabby)\nassert unpickled_tabby is tabby  # also gensyms survive a pickle roundtrip\n```\n</details>  \n<details><summary>Lispy data structures.</summary>\n\n[[docs for `box`](doc/features.md#box-a-mutable-single-item-container)] [[docs for `cons`](doc/features.md#cons-and-friends-pythonic-lispy-linked-lists)] [[docs for `frozendict`](doc/features.md#frozendict-an-immutable-dictionary)]\n\n```python\nfrom unpythonic import box, unbox  # mutable single-item container\ncat = object()\ncardboardbox = box(cat)\nassert cardboardbox is not cat  # the box is not the cat\nassert unbox(cardboardbox) is cat  # but the cat is inside the box\nassert cat in cardboardbox  # ...also syntactically\ndog = object()\ncardboardbox << dog  # hey, it's my box! (replace contents)\nassert unbox(cardboardbox) is dog\n\nfrom unpythonic import cons, nil, ll, llist  # lispy linked lists\nlst = cons(1, cons(2, cons(3, nil)))\nassert ll(1, 2, 3) == lst  # make linked list out of elements\nassert llist([1, 2, 3]) == lst  # convert iterable to linked list\n\nfrom unpythonic import frozendict  # immutable dictionary\nd1 = frozendict({'a': 1, 'b': 2})\nd2 = frozendict(d1, c=3, a=4)\nassert d1 == frozendict({'a': 1, 'b': 2})\nassert d2 == frozendict({'a': 4, 'b': 2, 'c': 3})\n```\n</details>\n<details><summary>Allow a lambda to call itself. Name a lambda.</summary>\n\n[[docs for `withself`](doc/features.md#batteries-for-functools)] [[docs for `namelambda`](doc/features.md#namelambda-rename-a-function)]\n\n```python\nfrom unpythonic import withself, namelambda\n\nfact = withself(lambda self, n: n * self(n - 1) if n > 1 else 1)  # see @trampolined to do this with TCO\nassert fact(5) == 120\n\nsquare = namelambda(\"square\")(lambda x: x**2)\nassert square.__name__ == \"square\"\nassert square.__qualname__ == \"square\"  # or e.g. \"somefunc.<locals>.square\" if inside a function\nassert square.__code__.co_name == \"square\"  # used by stack traces\n```\n</details>  \n<details><summary>Break infinite recursion cycles.</summary>\n\n[[docs](doc/features.md#fix-break-infinite-recursion-cycles)]\n\n```python\nfrom typing import NoReturn\nfrom unpythonic import fix\n\n@fix()\ndef a(k):\n    return b((k + 1) % 3)\n@fix()\ndef b(k):\n    return a((k + 1) % 3)\nassert a(0) is NoReturn\n```\n</details>  \n<details><summary>Build number sequences by example. Slice general iterables.</summary>\n\n[[docs for `s`](doc/features.md#s-m-mg-lazy-mathematical-sequences-with-infix-arithmetic)] [[docs for `islice`](doc/features.md#islice-slice-syntax-support-for-itertoolsislice)]\n\n```python\nfrom unpythonic import s, islice\n\nseq = s(1, 2, 4, ...)\nassert tuple(islice(seq)[:10]) == (1, 2, 4, 8, 16, 32, 64, 128, 256, 512)\n```\n</details>  \n<details><summary>Memoize functions and generators.</summary>\n\n[[docs for `memoize`](doc/features.md#batteries-for-functools)] [[docs for `gmemoize`](doc/features.md#gmemoize-imemoize-fimemoize-memoize-generators)]\n\n```python\nfrom itertools import count, takewhile\nfrom unpythonic import memoize, gmemoize, islice\n\nncalls = 0\n@memoize  # <-- important part\ndef square(x):\n    global ncalls\n    ncalls += 1\n    return x**2\nassert square(2) == 4\nassert ncalls == 1\nassert square(3) == 9\nassert ncalls == 2\nassert square(3) == 9\nassert ncalls == 2  # called only once for each unique set of arguments\n\n# \"memoize lambda\": classic evaluate-at-most-once thunk\nthunk = memoize(lambda: print(\"hi from thunk\"))\nthunk()  # the message is printed only the first time\nthunk()\n\n@gmemoize  # <-- important part\ndef primes():  # FP sieve of Eratosthenes\n    yield 2\n    for n in count(start=3, step=2):\n        if not any(n % p == 0 for p in takewhile(lambda x: x*x <= n, primes())):\n            yield n\n\nassert tuple(islice(primes())[:10]) == (2, 3, 5, 7, 11, 13, 17, 19, 23, 29)\n```\n</details>  \n<details><summary>Functional updates.</summary>\n\n[[docs](doc/features.md#fup-functional-update-shadowedsequence)]\n\n```python\nfrom itertools import repeat\nfrom unpythonic import fup\n\nt = (1, 2, 3, 4, 5)\ns = fup(t)[0::2] << repeat(10)\nassert s == (10, 2, 10, 4, 10)\nassert t == (1, 2, 3, 4, 5)\n\nfrom itertools import count\nfrom unpythonic import imemoize\nt = (1, 2, 3, 4, 5)\ns = fup(t)[::-2] << imemoize(count(start=10))()\nassert s == (12, 2, 11, 4, 10)\nassert t == (1, 2, 3, 4, 5)\n```\n</details>  \n<details><summary>Live list slices.</summary>\n\n[[docs](doc/features.md#view-writable-sliceable-view-into-a-sequence)]\n\n```python\nfrom unpythonic import view\n\nlst = list(range(10))\nv = view(lst)[::2]  # [0, 2, 4, 6, 8]\nv[2:4] = (10, 20)  # re-slicable, still live.\nassert lst == [0, 1, 2, 3, 10, 5, 20, 7, 8, 9]\n\nlst[2] = 42\nassert v == [0, 42, 10, 20, 8]\n```\n</details>  \n<details><summary>Pipes: method chaining syntax for regular functions.</summary>\n\n[[docs](doc/features.md#pipe-piped-lazy_piped-sequence-functions)]\n\n```python\nfrom unpythonic import piped, exitpipe\n\ndouble = lambda x: 2 * x\ninc    = lambda x: x + 1\nx = piped(42) | double | inc | exitpipe\nassert x == 85\n```\n\nThe point is usability: in a function composition using pipe syntax, data flows from left to right.\n</details>\n\n\n#### Unpythonic in 30 seconds: Language extensions with macros\n\n<details><summary>unpythonic.test.fixtures: a minimalistic test framework for macro-enabled Python.</summary>\n\n[[docs](doc/macros.md#unpythonictestfixtures-a-test-framework-for-macro-enabled-python)]\n\n```python\nfrom unpythonic.syntax import macros, test, test_raises, fail, error, warn, the\nfrom unpythonic.test.fixtures import session, testset, terminate, returns_normally\n\ndef f():\n    raise RuntimeError(\"argh!\")\n\ndef g(a, b):\n    return a * b\n    fail[\"this line should be unreachable\"]\n\ncount = 0\ndef counter():\n    global count\n    count += 1\n    return count\n\nwith session(\"simple framework demo\"):\n    with testset():\n        test[2 + 2 == 4]\n        test_raises[RuntimeError, f()]\n        test[returns_normally(g(2, 3))]\n        test[g(2, 3) == 6]\n        # Use `the[]` (or several) in a `test[]` to declare what you want to inspect if the test fails.\n        # Implicit `the[]`: in comparison, the LHS; otherwise the whole expression. Used if no explicit `the[]`.\n        test[the[counter()] < the[counter()]]\n\n    with testset(\"outer\"):\n        with testset(\"inner 1\"):\n            test[g(6, 7) == 42]\n        with testset(\"inner 2\"):\n            test[None is None]\n        with testset(\"inner 3\"):  # an empty testset is considered 100% passed.\n            pass\n        with testset(\"inner 4\"):\n            warn[\"This testset not implemented yet\"]\n\n    with testset(\"integration\"):\n        try:\n            import blargly\n        except ImportError:\n            error[\"blargly not installed, cannot test integration with it.\"]\n        else:\n            ... # blargly integration tests go here\n\n    with testset(postproc=terminate):\n        test[2 * 2 == 5]  # fails, terminating the nearest dynamically enclosing `with session`\n        test[2 * 2 == 4]  # not reached\n```\n\nWe provide the low-level syntactic constructs `test[]`, `test_raises[]` and `test_signals[]`, with the usual meanings. The last one is for testing code that uses conditions and restarts; see `unpythonic.conditions`.\n\nThe test macros also come in block variants, `with test`, `with test_raises`, `with test_signals`.\n\nAs usual in test frameworks, the testing constructs behave somewhat like `assert`, with the difference that a failure or error will not abort the whole unit (unless explicitly asked to do so).\n</details>\n<details><summary>let: expression-local variables.</summary>\n\n[[docs](doc/macros.md#let-letseq-letrec-as-macros)]\n\n```python\nfrom unpythonic.syntax import macros, let, letseq, letrec\n\nx = let[[a << 1, b << 2] in a + b]\ny = letseq[[c << 1,  # LET SEQuential, like Scheme's let*\n            c << 2 * c,\n            c << 2 * c] in\n           c]\nz = letrec[[evenp << (lambda x: (x == 0) or oddp(x - 1)),  # LET mutually RECursive, like in Scheme\n            oddp << (lambda x: (x != 0) and evenp(x - 1))]\n           in evenp(42)]\n```\n</details>  \n<details><summary>let-over-lambda: stateful functions.</summary>\n\n[[docs](doc/macros.md#dlet-dletseq-dletrec-blet-bletseq-bletrec-decorator-versions)]\n\n```python\nfrom unpythonic.syntax import macros, dlet\n\n# Up to Python 3.8, use `@dlet(x << 0)` instead\n@dlet[x << 0]  # let-over-lambda for Python\ndef count():\n    return x << x + 1  # `name << value` rebinds in the let env\nassert count() == 1\nassert count() == 2\n```\n</details>  \n<details><summary>do: code imperatively in any expression position.</summary>\n\n[[docs](doc/macros.md#do-as-a-macro-stuff-imperative-code-into-an-expression-with-style)]\n\n```python\nfrom unpythonic.syntax import macros, do, local, delete\n\nx = do[local[a << 21],\n       local[b << 2 * a],\n       print(b),\n       delete[b],  # do[] local variables can be deleted, too\n       4 * a]\nassert x == 84\n```\n</details>  \n<details><summary>Automatically apply tail call optimization (TCO), \u00e0 la Scheme/Racket.</summary>\n\n[[docs](doc/macros.md#tco-automatic-tail-call-optimization-for-python)]\n\n```python\nfrom unpythonic.syntax import macros, tco\n\nwith tco:\n    # expressions are automatically analyzed to detect tail position.\n    evenp = lambda x: (x == 0) or oddp(x - 1)\n    oddp  = lambda x: (x != 0) and evenp(x - 1)\n    assert evenp(10000) is True\n```\n</details>  \n<details><summary>Curry automatically, \u00e0 la Haskell.</summary>\n\n[[docs](doc/macros.md#autocurry-automatic-currying-for-python)]\n\n```python\nfrom unpythonic.syntax import macros, autocurry\nfrom unpythonic import foldr, composerc as compose, cons, nil, ll\n\nwith autocurry:\n    def add3(a, b, c):\n        return a + b + c\n    assert add3(1)(2)(3) == 6\n\n    mymap = lambda f: foldr(compose(cons, f), nil)\n    double = lambda x: 2 * x\n    assert mymap(double, (1, 2, 3)) == ll(2, 4, 6)\n```\n</details>  \n<details><summary>Lazy functions, a.k.a. call-by-need.</summary>\n\n[[docs](doc/macros.md#lazify-call-by-need-for-python)]\n\n```python\nfrom unpythonic.syntax import macros, lazify\n\nwith lazify:\n    def my_if(p, a, b):\n        if p:\n            return a  # b never evaluated in this code path\n        else:\n            return b  # a never evaluated in this code path\n    assert my_if(True, 23, 1/0) == 23\n    assert my_if(False, 1/0, 42) == 42\n```\n</details>  \n<details><summary>Genuine multi-shot continuations (call/cc).</summary>\n\n[[docs](doc/macros.md#continuations-callcc-for-python)]\n\n```python\nfrom unpythonic.syntax import macros, continuations, call_cc\n\nwith continuations:  # enables also TCO automatically\n    # McCarthy's amb() operator\n    stack = []\n    def amb(lst, cc):\n        if not lst:\n            return fail()\n        first, *rest = tuple(lst)\n        if rest:\n            remaining_part_of_computation = cc\n            stack.append(lambda: amb(rest, cc=remaining_part_of_computation))\n        return first\n    def fail():\n        if stack:\n            f = stack.pop()\n            return f()\n\n    # Pythagorean triples using amb()\n    def pt():\n        z = call_cc[amb(range(1, 21))]  # capture continuation, auto-populate cc arg\n        y = call_cc[amb(range(1, z+1))]\n        x = call_cc[amb(range(1, y+1))]\n        if x*x + y*y != z*z:\n            return fail()\n        return x, y, z\n    t = pt()\n    while t:\n        print(t)\n        t = fail()  # note pt() has already returned when we call this.\n```\n</details>\n\n\n#### Unpythonic in 30 seconds: Language extensions with dialects\n\nThe [dialects subsystem of `mcpyrate`](https://github.com/Technologicat/mcpyrate/blob/master/doc/dialects.md) makes Python into a language platform, \u00e0 la [Racket](https://racket-lang.org/). We provide some example dialects based on `unpythonic`'s macro layer. See [documentation](doc/dialects.md).\n\n<details><summary>Lispython: automatic TCO and an implicit return statement.</summary>\n\n[[docs](doc/dialects/lispython.md)]\n\nAlso comes with automatically named, multi-expression lambdas.\n\n```python\nfrom unpythonic.dialects import dialects, Lispython  # noqa: F401\n\ndef factorial(n):\n    def f(k, acc):\n        if k == 1:\n            return acc\n        f(k - 1, k * acc)\n    f(n, acc=1)\nassert factorial(4) == 24\nfactorial(5000)  # no crash\n\nsquare = lambda x: x**2\nassert square(3) == 9\nassert square.__name__ == \"square\"\n\n# - brackets denote a multiple-expression lambda body\n#   (if you want to have one expression that is a literal list,\n#    double the brackets: `lambda x: [[5 * x]]`)\n# - local[name << value] makes an expression-local variable\ng = lambda x: [local[y << 2 * x],\n               y + 1]\nassert g(10) == 21\n```\n</details>  \n<details><summary>Pytkell: Automatic currying and implicitly lazy functions.</summary>\n\n[[docs](doc/dialects/pytkell.md)]\n\n```python\nfrom unpythonic.dialects import dialects, Pytkell  # noqa: F401\n\nfrom operator import add, mul\n\ndef addfirst2(a, b, c):\n    return a + b\nassert addfirst2(1)(2)(1 / 0) == 3\n\nassert tuple(scanl(add, 0, (1, 2, 3))) == (0, 1, 3, 6)\nassert tuple(scanr(add, 0, (1, 2, 3))) == (0, 3, 5, 6)\n\nmy_sum = foldl(add, 0)\nmy_prod = foldl(mul, 1)\nmy_map = lambda f: foldr(compose(cons, f), nil)\nassert my_sum(range(1, 5)) == 10\nassert my_prod(range(1, 5)) == 24\ndouble = lambda x: 2 * x\nassert my_map(double, (1, 2, 3)) == ll(2, 4, 6)\n```\n</details>  \n<details><summary>Listhell: Prefix syntax for function calls, and automatic currying.</summary>\n\n[[docs](doc/dialects/listhell.md)]\n\n```python\nfrom unpythonic.dialects import dialects, Listhell  # noqa: F401\n\nfrom operator import add, mul\nfrom unpythonic import foldl, foldr, cons, nil, ll\n\n(print, \"hello from Listhell\")\n\nmy_sum = (foldl, add, 0)\nmy_prod = (foldl, mul, 1)\nmy_map = lambda f: (foldr, (compose, cons, f), nil)\nassert (my_sum, (range, 1, 5)) == 10\nassert (my_prod, (range, 1, 5)) == 24\ndouble = lambda x: 2 * x\nassert (my_map, double, (q, 1, 2, 3)) == (ll, 2, 4, 6)\n```\n</details>\n\n## Installation\n\n**PyPI**\n\n``pip3 install unpythonic --user``\n\nor\n\n``sudo pip3 install unpythonic``\n\n**GitHub**\n\nClone (or pull) from GitHub. Then,\n\n``python3 setup.py install --user``\n\nor\n\n``sudo python3 setup.py install``\n\n**Uninstall**\n\nUninstallation must be invoked in a folder which has no subfolder called ``unpythonic``, so that ``pip`` recognizes it as a package name (instead of a filename). Then,\n\n``pip3 uninstall unpythonic``\n\nor\n\n``sudo pip3 uninstall unpythonic``\n\n\n## Support\n\nNot working as advertised? Missing a feature? Documentation needs improvement?\n\nIn case of a problem, see [Troubleshooting](doc/troubleshooting.md) first. Then:\n\n**[Issue reports](https://github.com/Technologicat/unpythonic/issues) and [pull requests](https://github.com/Technologicat/unpythonic/pulls) are welcome.** [Contribution guidelines](CONTRIBUTING.md).\n\nWhile `unpythonic` is intended as a serious tool for improving productivity as well as for teaching, right now my work priorities mean that it's developed and maintained on whatever time I can spare for it. Thus getting a response may take a while, depending on which project I happen to be working on.\n\n\n## License\n\nAll original code is released under the 2-clause [BSD license](LICENSE.md).\n\nFor sources and licenses of fragments originally seen on the internet, see [AUTHORS](AUTHORS.md).\n\n\n## Acknowledgements\n\nThanks to [TUT](http://www.tut.fi/en/home) for letting me teach [RAK-19006 in spring term 2018](https://github.com/Technologicat/python-3-scicomp-intro); early versions of parts of this library were originally developed as teaching examples for that course. Thanks to @AgenttiX for early feedback.\n\n\n## Relevant reading\n\nLinks to blog posts, online articles and papers on topics relevant in the context of `unpythonic` have been collected to [a separate document](doc/readings.md).\n\nIf you like both FP and numerics, we have [some examples](unpythonic/tests/test_fpnumerics.py) based on various internet sources.\n",
    "bugtrack_url": null,
    "license": "BSD",
    "summary": "Supercharge your Python with parts of Lisp and Haskell.",
    "version": "0.15.2",
    "project_urls": {
        "Homepage": "https://github.com/Technologicat/unpythonic"
    },
    "split_keywords": [
        "functional-programming",
        " language-extension",
        " syntactic-macros",
        " tail-call-optimization",
        " tco",
        " continuations",
        " currying",
        " lazy-evaluation",
        " dynamic-variable",
        " macros",
        " lisp",
        " scheme",
        " racket",
        " haskell"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "cc58ef2d616b2e19acefe026238f180110ddeff357286e50e4a540fd46fc3b18",
                "md5": "83439ef6e4cad07caa0aed5e2368e291",
                "sha256": "40d11e9904f1d163fcfe8eead534381fdbf21dce70ec58ef5dabf9a8f337b62c"
            },
            "downloads": -1,
            "filename": "unpythonic-0.15.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "83439ef6e4cad07caa0aed5e2368e291",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<3.11,>=3.6",
            "size": 360553,
            "upload_time": "2024-09-19T11:57:49",
            "upload_time_iso_8601": "2024-09-19T11:57:49.237728Z",
            "url": "https://files.pythonhosted.org/packages/cc/58/ef2d616b2e19acefe026238f180110ddeff357286e50e4a540fd46fc3b18/unpythonic-0.15.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "60e9e1b1514766a53607b1f2ab73b46483a7292561350db77fb12e9ac785197f",
                "md5": "885572a5afa67785dd618e04bd8238ee",
                "sha256": "88682243700bde30d3488c6d6b61e58894bcea7be177aec4d7b175915f9d7c48"
            },
            "downloads": -1,
            "filename": "unpythonic-0.15.2.tar.gz",
            "has_sig": false,
            "md5_digest": "885572a5afa67785dd618e04bd8238ee",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<3.11,>=3.6",
            "size": 321773,
            "upload_time": "2024-09-19T11:57:51",
            "upload_time_iso_8601": "2024-09-19T11:57:51.574997Z",
            "url": "https://files.pythonhosted.org/packages/60/e9/e1b1514766a53607b1f2ab73b46483a7292561350db77fb12e9ac785197f/unpythonic-0.15.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-09-19 11:57:51",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Technologicat",
    "github_project": "unpythonic",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "unpythonic"
}
        
Elapsed time: 0.82622s