Name | vaderSentiment JSON |
Version |
3.3.2
JSON |
| download |
home_page | https://github.com/cjhutto/vaderSentiment |
Summary | VADER Sentiment Analysis. VADER (Valence Aware Dictionary and sEntiment Reasoner) is a lexicon and rule-based sentiment analysis tool that is specifically attuned to sentiments expressed in social media, and works well on texts from other domains. |
upload_time | 2020-05-22 15:06:32 |
maintainer | |
docs_url | None |
author | C.J. Hutto |
requires_python | |
license | MIT License |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
VADER (Valence Aware Dictionary and sEntiment Reasoner) is a lexicon and rule-based sentiment analysis tool that is *specifically attuned to sentiments expressed in social media*. It is fully open-sourced under the `[MIT License] <http://choosealicense.com/>`_ (we sincerely appreciate all attributions and readily accept most contributions, but please don't hold us liable).
**Citation Information**
If you use either the dataset or any of the VADER sentiment analysis tools (VADER sentiment lexicon or Python code for rule-based sentiment analysis engine) in your research, please cite the above paper. For example:
**Hutto, C.J. & Gilbert, E.E. (2014). VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text. Eighth International Conference on Weblogs and Social Media (ICWSM-14). Ann Arbor, MI, June 2014.**
* Code examples are provided on the `[VADER GitHub Repo] <https://github.com/cjhutto/vaderSentiment>`_
* Details about the scoring are provided on the `[VADER GitHub Repo] <https://github.com/cjhutto/vaderSentiment>`_
* VADER has been ported to Java, JavaScript, PHP, Scala, C#, Rust, and Go (see details and links to these on the `[VADER GitHub Repo] <https://github.com/cjhutto/vaderSentiment>`_
Keywords: vader,sentiment,analysis,opinion,mining,nlp,text,data,text analysis,opinion analysis,sentiment analysis,text mining,twitter sentiment,opinion mining,social media,twitter,social,media
Platform: any
Classifier: Development Status :: 5 - Production/Stable
Classifier: Intended Audience :: Science/Research
Classifier: License :: OSI Approved :: MIT License
Classifier: Natural Language :: English
Classifier: Programming Language :: Python :: 3.5
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
Classifier: Topic :: Scientific/Engineering :: Information Analysis
Classifier: Topic :: Text Processing :: Linguistic
Classifier: Topic :: Text Processing :: General
Description-Content-Type: text/x-rst
Raw data
{
"_id": null,
"home_page": "https://github.com/cjhutto/vaderSentiment",
"name": "vaderSentiment",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "",
"author": "C.J. Hutto",
"author_email": "cjhutto@gatech.edu",
"download_url": "https://files.pythonhosted.org/packages/77/8c/4a48c10a50f750ae565e341e697d74a38075a3e43ff0df6f1ab72e186902/vaderSentiment-3.3.2.tar.gz",
"platform": "",
"description": " \r\r\n VADER (Valence Aware Dictionary and sEntiment Reasoner) is a lexicon and rule-based sentiment analysis tool that is *specifically attuned to sentiments expressed in social media*. It is fully open-sourced under the `[MIT License] <http://choosealicense.com/>`_ (we sincerely appreciate all attributions and readily accept most contributions, but please don't hold us liable).\r\r\n \r\r\n **Citation Information**\r\r\n \r\r\n If you use either the dataset or any of the VADER sentiment analysis tools (VADER sentiment lexicon or Python code for rule-based sentiment analysis engine) in your research, please cite the above paper. For example: \r\r\n \r\r\n **Hutto, C.J. & Gilbert, E.E. (2014). VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text. Eighth International Conference on Weblogs and Social Media (ICWSM-14). Ann Arbor, MI, June 2014.** \r\r\n \r\r\n \r\n * Code examples are provided on the `[VADER GitHub Repo] <https://github.com/cjhutto/vaderSentiment>`_\r\r\n * Details about the scoring are provided on the `[VADER GitHub Repo] <https://github.com/cjhutto/vaderSentiment>`_\r\r\n * VADER has been ported to Java, JavaScript, PHP, Scala, C#, Rust, and Go (see details and links to these on the `[VADER GitHub Repo] <https://github.com/cjhutto/vaderSentiment>`_\r\r\n \r\n \r\r\n \r\nKeywords: vader,sentiment,analysis,opinion,mining,nlp,text,data,text analysis,opinion analysis,sentiment analysis,text mining,twitter sentiment,opinion mining,social media,twitter,social,media\r\nPlatform: any\r\nClassifier: Development Status :: 5 - Production/Stable\r\nClassifier: Intended Audience :: Science/Research\r\nClassifier: License :: OSI Approved :: MIT License\r\nClassifier: Natural Language :: English\r\nClassifier: Programming Language :: Python :: 3.5\r\nClassifier: Topic :: Scientific/Engineering :: Artificial Intelligence\r\nClassifier: Topic :: Scientific/Engineering :: Information Analysis\r\nClassifier: Topic :: Text Processing :: Linguistic\r\nClassifier: Topic :: Text Processing :: General\r\nDescription-Content-Type: text/x-rst\r\n",
"bugtrack_url": null,
"license": "MIT License",
"summary": "VADER Sentiment Analysis. VADER (Valence Aware Dictionary and sEntiment Reasoner) is a lexicon and rule-based sentiment analysis tool that is specifically attuned to sentiments expressed in social media, and works well on texts from other domains.",
"version": "3.3.2",
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"md5": "16ef262a061a61a2534beea018cfe19a",
"sha256": "3bf1d243b98b1afad575b9f22bc2cb1e212b94ff89ca74f8a23a588d024ea311"
},
"downloads": -1,
"filename": "vaderSentiment-3.3.2-py2.py3-none-any.whl",
"has_sig": false,
"md5_digest": "16ef262a061a61a2534beea018cfe19a",
"packagetype": "bdist_wheel",
"python_version": "py2.py3",
"requires_python": null,
"size": 125950,
"upload_time": "2020-05-22T15:07:00",
"upload_time_iso_8601": "2020-05-22T15:07:00.052401Z",
"url": "https://files.pythonhosted.org/packages/76/fc/310e16254683c1ed35eeb97386986d6c00bc29df17ce280aed64d55537e9/vaderSentiment-3.3.2-py2.py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "a04f43dfcc57119bcabaa12f356c8c40",
"sha256": "5d7c06e027fc8b99238edb0d53d970cf97066ef97654009890b83703849632f9"
},
"downloads": -1,
"filename": "vaderSentiment-3.3.2.tar.gz",
"has_sig": false,
"md5_digest": "a04f43dfcc57119bcabaa12f356c8c40",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 2466783,
"upload_time": "2020-05-22T15:06:32",
"upload_time_iso_8601": "2020-05-22T15:06:32.810450Z",
"url": "https://files.pythonhosted.org/packages/77/8c/4a48c10a50f750ae565e341e697d74a38075a3e43ff0df6f1ab72e186902/vaderSentiment-3.3.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2020-05-22 15:06:32",
"github": true,
"gitlab": false,
"bitbucket": false,
"github_user": "cjhutto",
"github_project": "vaderSentiment",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "vadersentiment"
}