Name | valmix JSON |
Version |
0.0.1
JSON |
| download |
home_page | None |
Summary | Adjust numerical values from a terminal user interface. |
upload_time | 2024-05-16 16:12:32 |
maintainer | None |
docs_url | None |
author | None |
requires_python | >=3.8 |
license | None |
keywords |
multiprocessing
value
tui
user
interface
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# Valmix
[![Build](https://img.shields.io/github/actions/workflow/status/stephane-caron/valmix/ci.yml?branch=main)](https://github.com/stephane-caron/valmix/actions)
[![Documentation](https://img.shields.io/github/actions/workflow/status/stephane-caron/valmix/docs.yml?branch=main&label=docs)](https://stephane-caron.github.io/valmix/)
[![Coverage](https://coveralls.io/repos/github/stephane-caron/valmix/badge.svg?branch=main)](https://coveralls.io/github/stephane-caron/valmix?branch=main)
[![PyPI version](https://img.shields.io/pypi/v/valmix)](https://pypi.org/project/valmix/)
Adjust numerical values from a terminal user interface.
## Usage
Suppose you have a Python program with parameters you want to tune:
```py
def main(kp: float, kd: float):
pass # your code here
```
Valmix gives a systematic way to tune these parameters from the command line. First, wrap your parameters in ``multiprocessing.Value``s:
```py
import multiprocessing as mp
kp = mp.Value("f", 10.0)
kd = mp.Value("f", 1.0)
```
Next, update your program to read from the multiprocessing values. For example:
```py
import numpy as np
import time
def main(kp: mp.Value, kd: mp.Value):
with open("/tmp/output", "w") as output:
for _ in range(100):
u = np.clip(kp.value * 1.0 + kd.value * 0.1, 5.0, 20.0)
output.write(f"{u}\n")
output.flush()
time.sleep(1.0)
```
Finally, run your program and Valmix together, specifying the tuning range for each value:
```py
# Call the main function in a separate process
main_process = mp.Process(target=main, args=(kp, kd))
main_process.start()
# Display the terminal user interface in this process (blocking call)
valmix.run(
{
"kp": (kp, np.arange(0.0, 20.0, 0.5)),
"kd": (kd, np.arange(0.0, 10.0, 0.5)),
}
)
```
This will fire up a terminal user interface (TUI) where you can tune ``kp`` and ``kd`` while the program runs in the background:
![image](https://github.com/stephane-caron/valmix/assets/1189580/1d50ccf5-9bb2-4a73-95e3-9f3345a91311)
Useful for instance to [tune robot behaviors](https://github.com/upkie/upkie/blob/main/examples/wheeled_balancing.py) in real-time 😉
## Installation
### From PyPI
```console
pip install valmix
```
## See also
Related software:
- [Textual](https://textual.textualize.io/): terminal user interface (TUI) framework for Python, used to build this tool.
Raw data
{
"_id": null,
"home_page": null,
"name": "valmix",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": "St\u00e9phane Caron <stephane.caron@inria.fr>",
"keywords": "multiprocessing, value, tui, user, interface",
"author": null,
"author_email": "St\u00e9phane Caron <stephane.caron@inria.fr>",
"download_url": "https://files.pythonhosted.org/packages/d5/a6/34951f1cee414908b352d9ea25b5fca0bcde235d8cb212c341b03b280c08/valmix-0.0.1.tar.gz",
"platform": null,
"description": "# Valmix\n\n[![Build](https://img.shields.io/github/actions/workflow/status/stephane-caron/valmix/ci.yml?branch=main)](https://github.com/stephane-caron/valmix/actions)\n[![Documentation](https://img.shields.io/github/actions/workflow/status/stephane-caron/valmix/docs.yml?branch=main&label=docs)](https://stephane-caron.github.io/valmix/)\n[![Coverage](https://coveralls.io/repos/github/stephane-caron/valmix/badge.svg?branch=main)](https://coveralls.io/github/stephane-caron/valmix?branch=main)\n[![PyPI version](https://img.shields.io/pypi/v/valmix)](https://pypi.org/project/valmix/)\n\nAdjust numerical values from a terminal user interface.\n\n## Usage\n\nSuppose you have a Python program with parameters you want to tune:\n\n```py\ndef main(kp: float, kd: float):\n pass # your code here\n```\n\nValmix gives a systematic way to tune these parameters from the command line. First, wrap your parameters in ``multiprocessing.Value``s:\n\n```py\nimport multiprocessing as mp\n\nkp = mp.Value(\"f\", 10.0)\nkd = mp.Value(\"f\", 1.0)\n```\n\nNext, update your program to read from the multiprocessing values. For example:\n\n```py\nimport numpy as np\nimport time\n\ndef main(kp: mp.Value, kd: mp.Value):\n with open(\"/tmp/output\", \"w\") as output:\n for _ in range(100):\n u = np.clip(kp.value * 1.0 + kd.value * 0.1, 5.0, 20.0)\n output.write(f\"{u}\\n\")\n output.flush()\n time.sleep(1.0)\n\n```\n\nFinally, run your program and Valmix together, specifying the tuning range for each value:\n\n```py\n # Call the main function in a separate process\n main_process = mp.Process(target=main, args=(kp, kd))\n main_process.start()\n\n # Display the terminal user interface in this process (blocking call)\n valmix.run(\n {\n \"kp\": (kp, np.arange(0.0, 20.0, 0.5)),\n \"kd\": (kd, np.arange(0.0, 10.0, 0.5)),\n }\n )\n```\n\nThis will fire up a terminal user interface (TUI) where you can tune ``kp`` and ``kd`` while the program runs in the background:\n\n![image](https://github.com/stephane-caron/valmix/assets/1189580/1d50ccf5-9bb2-4a73-95e3-9f3345a91311)\n\nUseful for instance to [tune robot behaviors](https://github.com/upkie/upkie/blob/main/examples/wheeled_balancing.py) in real-time \ud83d\ude09\n\n## Installation\n\n### From PyPI\n\n```console\npip install valmix\n```\n\n## See also\n\nRelated software:\n\n- [Textual](https://textual.textualize.io/): terminal user interface (TUI) framework for Python, used to build this tool.\n",
"bugtrack_url": null,
"license": null,
"summary": "Adjust numerical values from a terminal user interface.",
"version": "0.0.1",
"project_urls": {
"Changelog": "https://github.com/stephane-caron/valmix/blob/main/CHANGELOG.md",
"Source": "https://github.com/stephane-caron/valmix",
"Tracker": "https://github.com/stephane-caron/valmix/issues"
},
"split_keywords": [
"multiprocessing",
" value",
" tui",
" user",
" interface"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "53cb64668a5a411e5582a3adb708a1a2ef471bdd1cdedbf42355163c2b1b9ddb",
"md5": "3e52ac5880b017f0792ec385f5b8d6af",
"sha256": "75e03aa4555a638742e52fc95e18d081df1e2c2cb769b20946e1729bc3d18841"
},
"downloads": -1,
"filename": "valmix-0.0.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "3e52ac5880b017f0792ec385f5b8d6af",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 10616,
"upload_time": "2024-05-16T16:12:30",
"upload_time_iso_8601": "2024-05-16T16:12:30.546989Z",
"url": "https://files.pythonhosted.org/packages/53/cb/64668a5a411e5582a3adb708a1a2ef471bdd1cdedbf42355163c2b1b9ddb/valmix-0.0.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "d5a634951f1cee414908b352d9ea25b5fca0bcde235d8cb212c341b03b280c08",
"md5": "9cab7e8007822c3017db8406787070e5",
"sha256": "2b7dc93e70ab7287526e9b8853571e92cc7a7315106a4caef34a28bd39e74e1c"
},
"downloads": -1,
"filename": "valmix-0.0.1.tar.gz",
"has_sig": false,
"md5_digest": "9cab7e8007822c3017db8406787070e5",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 14378,
"upload_time": "2024-05-16T16:12:32",
"upload_time_iso_8601": "2024-05-16T16:12:32.754757Z",
"url": "https://files.pythonhosted.org/packages/d5/a6/34951f1cee414908b352d9ea25b5fca0bcde235d8cb212c341b03b280c08/valmix-0.0.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-05-16 16:12:32",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "stephane-caron",
"github_project": "valmix",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"tox": true,
"lcname": "valmix"
}