Name | valohai-yaml JSON |
Version |
0.46.0
JSON |
| download |
home_page | None |
Summary | Valohai.yaml validation and parsing |
upload_time | 2025-01-15 12:36:14 |
maintainer | None |
docs_url | None |
author | None |
requires_python | >=3.8 |
license | None |
keywords |
strings
utility
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
|
# valohai-yaml
[![Build Status](https://github.com/valohai/valohai-yaml/actions/workflows/ci.yml/badge.svg)](https://github.com/valohai/valohai-yaml/actions/workflows/ci.yml)
[![Codecov](https://codecov.io/gh/valohai/valohai-yaml/branch/master/graph/badge.svg)](https://codecov.io/gh/valohai/valohai-yaml)
[![License: MIT](https://img.shields.io/badge/License-MIT-green.svg)](https://opensource.org/licenses/MIT)
Parses and validates `valohai.yaml` files.
Valohai YAML files are used to define how your machine learning project workloads and pipelines are ran on the [Valohai](https://valohai.com/) ecosystem. Refer to [Valohai Documentation](https://docs.valohai.com/) to learn how to write the actual YAML files and for more in-depth usage examples.
## Installation
```bash
pip install valohai-yaml
```
## Usage
### Validation
Programmatic usage:
```python
from valohai_yaml import validate, ValidationErrors
try:
with open('path/to/valohai.yaml') as f:
validate(f)
except ValidationErrors as errors:
print('oh no!')
for err in errors:
print(err)
```
Command-line usage:
```bash
valohai-yaml my_yaml.yaml
echo $? # 1 if errors, 0 if ok
```
### Parsing
```python
from valohai_yaml import parse
with open('path/to/valohai.yaml') as f:
config = parse(f)
print(config.steps['cool step'].command)
```
# Development
```bash
# setup development dependencies
make dev
# run linting and type checks
make lint
# run tests
make test
```
Raw data
{
"_id": null,
"home_page": null,
"name": "valohai-yaml",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "strings, utility",
"author": null,
"author_email": "Valohai <info@valohai.com>",
"download_url": "https://files.pythonhosted.org/packages/76/78/e9790b5584d12fd1e3dd9c7b36f4d05c87de7e5d08a6f6f12d99b80e2fea/valohai_yaml-0.46.0.tar.gz",
"platform": null,
"description": "# valohai-yaml\n\n[![Build Status](https://github.com/valohai/valohai-yaml/actions/workflows/ci.yml/badge.svg)](https://github.com/valohai/valohai-yaml/actions/workflows/ci.yml)\n[![Codecov](https://codecov.io/gh/valohai/valohai-yaml/branch/master/graph/badge.svg)](https://codecov.io/gh/valohai/valohai-yaml)\n[![License: MIT](https://img.shields.io/badge/License-MIT-green.svg)](https://opensource.org/licenses/MIT)\n\nParses and validates `valohai.yaml` files.\n\nValohai YAML files are used to define how your machine learning project workloads and pipelines are ran on the [Valohai](https://valohai.com/) ecosystem. Refer to [Valohai Documentation](https://docs.valohai.com/) to learn how to write the actual YAML files and for more in-depth usage examples.\n\n## Installation\n\n```bash\npip install valohai-yaml\n```\n\n## Usage\n\n### Validation\n\nProgrammatic usage:\n\n```python\nfrom valohai_yaml import validate, ValidationErrors\n\ntry:\n with open('path/to/valohai.yaml') as f:\n validate(f)\nexcept ValidationErrors as errors:\n print('oh no!')\n for err in errors:\n print(err)\n```\n\nCommand-line usage:\n\n```bash\nvalohai-yaml my_yaml.yaml\necho $? # 1 if errors, 0 if ok\n```\n\n### Parsing\n\n```python\nfrom valohai_yaml import parse\n\nwith open('path/to/valohai.yaml') as f:\n config = parse(f)\n\nprint(config.steps['cool step'].command)\n```\n\n# Development\n\n```bash\n# setup development dependencies\nmake dev\n\n# run linting and type checks\nmake lint\n\n# run tests\nmake test\n```\n",
"bugtrack_url": null,
"license": null,
"summary": "Valohai.yaml validation and parsing",
"version": "0.46.0",
"project_urls": {
"Homepage": "https://github.com/valohai/valohai-yaml"
},
"split_keywords": [
"strings",
" utility"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "e78cab0504e1597fad86d129e8195d062517aff5478e01ff16a47d2b22177b5b",
"md5": "6038365b623b7ff04fdf66e3424877d0",
"sha256": "708f238f9af054a8d0f07390326512de91d1d95fa3247c6012ba8c27f5bbf190"
},
"downloads": -1,
"filename": "valohai_yaml-0.46.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "6038365b623b7ff04fdf66e3424877d0",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 55857,
"upload_time": "2025-01-15T12:36:12",
"upload_time_iso_8601": "2025-01-15T12:36:12.495405Z",
"url": "https://files.pythonhosted.org/packages/e7/8c/ab0504e1597fad86d129e8195d062517aff5478e01ff16a47d2b22177b5b/valohai_yaml-0.46.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "7678e9790b5584d12fd1e3dd9c7b36f4d05c87de7e5d08a6f6f12d99b80e2fea",
"md5": "19f5d8bb651c242a3d5b7ded3aae5782",
"sha256": "318a45a6043484802d6ef8c201d20fcb74050ac3f335ad27f8542f4814a07445"
},
"downloads": -1,
"filename": "valohai_yaml-0.46.0.tar.gz",
"has_sig": false,
"md5_digest": "19f5d8bb651c242a3d5b7ded3aae5782",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 53817,
"upload_time": "2025-01-15T12:36:14",
"upload_time_iso_8601": "2025-01-15T12:36:14.197258Z",
"url": "https://files.pythonhosted.org/packages/76/78/e9790b5584d12fd1e3dd9c7b36f4d05c87de7e5d08a6f6f12d99b80e2fea/valohai_yaml-0.46.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-01-15 12:36:14",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "valohai",
"github_project": "valohai-yaml",
"travis_ci": false,
"coveralls": true,
"github_actions": true,
"lcname": "valohai-yaml"
}