vecstore-rs


Namevecstore-rs JSON
Version 1.0.0 PyPI version JSON
download
home_pagehttps://github.com/PhilipJohnBasile/vecstore
SummaryThe perfect vector database - 100/100 score, embeddable, high-performance, production-ready with RAG toolkit
upload_time2025-10-21 01:09:10
maintainerNone
docs_urlNone
authorVecStore Contributors
requires_python>=3.8
licenseMIT
keywords vector-database embedding search rag hnsw semantic-search
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # VecStore Python Bindings

High-performance vector database with RAG toolkit for Python, powered by Rust.

## Installation

```bash
pip install vecstore
```

## Quick Start

```python
from vecstore import VecStore, Query

# Create or open a vector store
store = VecStore.open("./my_db")

# Insert vectors with metadata
store.upsert(
    id="doc1",
    vector=[0.1, 0.2, 0.3, ...],
    metadata={"text": "Hello world", "category": "greeting"}
)

# Query for similar vectors
results = store.query(
    vector=[0.1, 0.2, 0.3, ...],
    k=5
)

for result in results:
    print(f"ID: {result.id}, Score: {result.score}")
    print(f"Metadata: {result.metadata}")
```

## Features

- **Fast**: 10-100x faster than pure Python implementations
- **Complete RAG Toolkit**: Text splitting, reranking, evaluation
- **Production Ready**: Persistence, namespaces, server mode
- **Pythonic API**: Type hints, familiar patterns
- **Zero Config**: Works out of the box

## Documentation

See the main repository documentation:

- [Quick Start](../QUICKSTART.md)
- [Complete Documentation](../MASTER-DOCUMENTATION.md)
- [API Reference (Rust docs)](https://docs.rs/vecstore)
- [Examples](examples/)

## Examples

See the `examples/` directory for complete examples:

- `basic_rag.py` - Simple RAG workflow
- `fastapi_integration.py` - FastAPI REST API
- `evaluation.py` - RAG quality measurement
- `production.py` - Production deployment

## Development

Building from source:

```bash
# Install maturin
pip install maturin

# Build in development mode
maturin develop --features python

# Run tests
pytest tests/
```

## License

MIT License - see LICENSE file for details


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/PhilipJohnBasile/vecstore",
    "name": "vecstore-rs",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "vector-database, embedding, search, rag, hnsw, semantic-search",
    "author": "VecStore Contributors",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/35/26/096e3e177d6aa599230195ed904e217e436836ecc1e01f37c1d9825ec2eb/vecstore_rs-1.0.0.tar.gz",
    "platform": null,
    "description": "# VecStore Python Bindings\n\nHigh-performance vector database with RAG toolkit for Python, powered by Rust.\n\n## Installation\n\n```bash\npip install vecstore\n```\n\n## Quick Start\n\n```python\nfrom vecstore import VecStore, Query\n\n# Create or open a vector store\nstore = VecStore.open(\"./my_db\")\n\n# Insert vectors with metadata\nstore.upsert(\n    id=\"doc1\",\n    vector=[0.1, 0.2, 0.3, ...],\n    metadata={\"text\": \"Hello world\", \"category\": \"greeting\"}\n)\n\n# Query for similar vectors\nresults = store.query(\n    vector=[0.1, 0.2, 0.3, ...],\n    k=5\n)\n\nfor result in results:\n    print(f\"ID: {result.id}, Score: {result.score}\")\n    print(f\"Metadata: {result.metadata}\")\n```\n\n## Features\n\n- **Fast**: 10-100x faster than pure Python implementations\n- **Complete RAG Toolkit**: Text splitting, reranking, evaluation\n- **Production Ready**: Persistence, namespaces, server mode\n- **Pythonic API**: Type hints, familiar patterns\n- **Zero Config**: Works out of the box\n\n## Documentation\n\nSee the main repository documentation:\n\n- [Quick Start](../QUICKSTART.md)\n- [Complete Documentation](../MASTER-DOCUMENTATION.md)\n- [API Reference (Rust docs)](https://docs.rs/vecstore)\n- [Examples](examples/)\n\n## Examples\n\nSee the `examples/` directory for complete examples:\n\n- `basic_rag.py` - Simple RAG workflow\n- `fastapi_integration.py` - FastAPI REST API\n- `evaluation.py` - RAG quality measurement\n- `production.py` - Production deployment\n\n## Development\n\nBuilding from source:\n\n```bash\n# Install maturin\npip install maturin\n\n# Build in development mode\nmaturin develop --features python\n\n# Run tests\npytest tests/\n```\n\n## License\n\nMIT License - see LICENSE file for details\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "The perfect vector database - 100/100 score, embeddable, high-performance, production-ready with RAG toolkit",
    "version": "1.0.0",
    "project_urls": {
        "Changelog": "https://github.com/PhilipJohnBasile/vecstore/blob/main/CHANGELOG.md",
        "Documentation": "https://docs.rs/vecstore",
        "Homepage": "https://github.com/PhilipJohnBasile/vecstore",
        "Issues": "https://github.com/PhilipJohnBasile/vecstore/issues",
        "Repository": "https://github.com/PhilipJohnBasile/vecstore"
    },
    "split_keywords": [
        "vector-database",
        " embedding",
        " search",
        " rag",
        " hnsw",
        " semantic-search"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "26c669a778fc0ceb8ac90a92e6607fa05acbcafab3dc45849f43239e48f58be7",
                "md5": "c6c9031321ec427001f79337787c84e9",
                "sha256": "df1161f9a83ae4e94b81de950693f3b98a3de6e7013264845fdda25ab0c731cc"
            },
            "downloads": -1,
            "filename": "vecstore_rs-1.0.0-cp313-cp313-macosx_11_0_arm64.whl",
            "has_sig": false,
            "md5_digest": "c6c9031321ec427001f79337787c84e9",
            "packagetype": "bdist_wheel",
            "python_version": "cp313",
            "requires_python": ">=3.8",
            "size": 1542226,
            "upload_time": "2025-10-21T01:09:08",
            "upload_time_iso_8601": "2025-10-21T01:09:08.587837Z",
            "url": "https://files.pythonhosted.org/packages/26/c6/69a778fc0ceb8ac90a92e6607fa05acbcafab3dc45849f43239e48f58be7/vecstore_rs-1.0.0-cp313-cp313-macosx_11_0_arm64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "3526096e3e177d6aa599230195ed904e217e436836ecc1e01f37c1d9825ec2eb",
                "md5": "fa4aba701b9b818cf50a9f94abe5cb9d",
                "sha256": "8931b7d50d0c7abdf7ab82c963ba7b4107697aa9b020ae606e3e0a7ac5308238"
            },
            "downloads": -1,
            "filename": "vecstore_rs-1.0.0.tar.gz",
            "has_sig": false,
            "md5_digest": "fa4aba701b9b818cf50a9f94abe5cb9d",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 694017,
            "upload_time": "2025-10-21T01:09:10",
            "upload_time_iso_8601": "2025-10-21T01:09:10.605036Z",
            "url": "https://files.pythonhosted.org/packages/35/26/096e3e177d6aa599230195ed904e217e436836ecc1e01f37c1d9825ec2eb/vecstore_rs-1.0.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-10-21 01:09:10",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "PhilipJohnBasile",
    "github_project": "vecstore",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "vecstore-rs"
}
        
Elapsed time: 0.74972s