vectrix


Namevectrix JSON
Version 0.0.75 PyPI version JSON
download
home_pageNone
SummaryAn assistant helping you to index webpages into structured datasets.
upload_time2024-08-30 17:19:58
maintainerNone
docs_urlNone
authorBen Selleslagh
requires_python<3.13,>=3.11
licenseMIT
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # PAGINX

![GitHub License](https://img.shields.io/github/license/vectrix-ai/paginx) ![PyPI - Version](https://img.shields.io/pypi/v/paginx) ![GitHub Tag](https://img.shields.io/github/v/tag/vectrix-ai/paginx)

 Paginx is an innovative Python-based project that leverages the power of Large Language Models (LLMs) and Retrieval-Augmented Generation (RAG) to provide intelligent question-answering capabilities for any given website. By simply entering a website URL, users can interact with an AI assistant that can answer questions and provide insights based on the content of the website.

## Setting Up a PostgreSQL instance with the pgvector Extension
To store the uploaded data for later retrieval (for example during RAG), you need to set up a PostgreSQL database with the pgvector extension enabled. This chapter guides you through the steps to install PostgreSQL, enable the pgvector extension, create a new database, and store the connection string as a URL. Alternatively, you can use hosted PostgreSQL instances provided by many cloud providers.

### 1. Install PostgreSQL and pgvector Extension
**Using Docker**
1.	Pull the PostgreSQL image with pgvector:
```sh
docker pull ankane/pgvector
```

2.	Run the PostgreSQL container with the pgvector extension enabled:
```sh
docker run -d --name paginx -e POSTGRES_PASSWORD=mysecretpassword -p 5432:5432 -e PG_EXTENSIONS="pgvector" ankane/pgvector
```

**Manual Installation**

If you prefer to install PostgreSQL and pgvector manually, please follow the instructions provided in the official documentation:

- [PostgreSQL Installation](https://www.postgresql.org/download/)
- [pgvector Installation](https://github.com/ankane/pgvector)

### 2. Create a New Database
Once you have PostgreSQL running with pgvector enabled, you need to create a new database for our application. You can do this by connecting to your PostgreSQL instance and executing the following SQL commands


Create a new database named `paginx` (you can choose a different name if you prefer):
```sql
CREATE DATABASE paginx;
```

Connect to the `paginx` database:
```sql
\c paginx;
```

Enable the pgvector extension for the `paginx` database:
```sql
CREATE EXTENSION IF NOT EXISTS vector;
```

### 3. Store the Connection String
After creating the database, you need to store the connection string as an enviroment variable named ```database_url```. This connection string will be used by paginx to connect to the database.


The envrioment variable can be set using the following command:
```sh
export database_url="postgresql://postgres:mysecretpassword@localhost/paginx"
```

### 4. Using a Hosted PostgreSQL Instance
If you prefer to use a hosted PostgreSQL instance, you can create a new database and store the connection string as a URL. Make sure to enable the pgvector extension for the hosted database.





            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "vectrix",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<3.13,>=3.11",
    "maintainer_email": null,
    "keywords": null,
    "author": "Ben Selleslagh",
    "author_email": "ben@dataframe.be",
    "download_url": "https://files.pythonhosted.org/packages/25/26/52b07db1b3548d7e767670eb413b861836e0c84a8e6b63ec387309fdb79f/vectrix-0.0.75.tar.gz",
    "platform": null,
    "description": "# PAGINX\n\n![GitHub License](https://img.shields.io/github/license/vectrix-ai/paginx) ![PyPI - Version](https://img.shields.io/pypi/v/paginx) ![GitHub Tag](https://img.shields.io/github/v/tag/vectrix-ai/paginx)\n\n Paginx is an innovative Python-based project that leverages the power of Large Language Models (LLMs) and Retrieval-Augmented Generation (RAG) to provide intelligent question-answering capabilities for any given website. By simply entering a website URL, users can interact with an AI assistant that can answer questions and provide insights based on the content of the website.\n\n## Setting Up a PostgreSQL instance with the pgvector Extension\nTo store the uploaded data for later retrieval (for example during RAG), you need to set up a PostgreSQL database with the pgvector extension enabled. This chapter guides you through the steps to install PostgreSQL, enable the pgvector extension, create a new database, and store the connection string as a URL. Alternatively, you can use hosted PostgreSQL instances provided by many cloud providers.\n\n### 1. Install PostgreSQL and pgvector Extension\n**Using Docker**\n1.\tPull the PostgreSQL image with pgvector:\n```sh\ndocker pull ankane/pgvector\n```\n\n2.\tRun the PostgreSQL container with the pgvector extension enabled:\n```sh\ndocker run -d --name paginx -e POSTGRES_PASSWORD=mysecretpassword -p 5432:5432 -e PG_EXTENSIONS=\"pgvector\" ankane/pgvector\n```\n\n**Manual Installation**\n\nIf you prefer to install PostgreSQL and pgvector manually, please follow the instructions provided in the official documentation:\n\n- [PostgreSQL Installation](https://www.postgresql.org/download/)\n- [pgvector Installation](https://github.com/ankane/pgvector)\n\n### 2. Create a New Database\nOnce you have PostgreSQL running with pgvector enabled, you need to create a new database for our application. You can do this by connecting to your PostgreSQL instance and executing the following SQL commands\n\n\nCreate a new database named `paginx` (you can choose a different name if you prefer):\n```sql\nCREATE DATABASE paginx;\n```\n\nConnect to the `paginx` database:\n```sql\n\\c paginx;\n```\n\nEnable the pgvector extension for the `paginx` database:\n```sql\nCREATE EXTENSION IF NOT EXISTS vector;\n```\n\n### 3. Store the Connection String\nAfter creating the database, you need to store the connection string as an enviroment variable named ```database_url```. This connection string will be used by paginx to connect to the database.\n\n\nThe envrioment variable can be set using the following command:\n```sh\nexport database_url=\"postgresql://postgres:mysecretpassword@localhost/paginx\"\n```\n\n### 4. Using a Hosted PostgreSQL Instance\nIf you prefer to use a hosted PostgreSQL instance, you can create a new database and store the connection string as a URL. Make sure to enable the pgvector extension for the hosted database.\n\n\n\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "An assistant helping you to index webpages into structured datasets.",
    "version": "0.0.75",
    "project_urls": null,
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3afbc9a30ec964056a9933a97dec6fd93d9169b4fbf86ebdfe184d967076a2d0",
                "md5": "93eedb70b216e9d03978c6acf0f3c389",
                "sha256": "eed0a73e2228285abd628ff2f8989c30f5f3c54b4eaa54dd24d919e6035b7c4c"
            },
            "downloads": -1,
            "filename": "vectrix-0.0.75-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "93eedb70b216e9d03978c6acf0f3c389",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<3.13,>=3.11",
            "size": 36412,
            "upload_time": "2024-08-30T17:19:57",
            "upload_time_iso_8601": "2024-08-30T17:19:57.195508Z",
            "url": "https://files.pythonhosted.org/packages/3a/fb/c9a30ec964056a9933a97dec6fd93d9169b4fbf86ebdfe184d967076a2d0/vectrix-0.0.75-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "252652b07db1b3548d7e767670eb413b861836e0c84a8e6b63ec387309fdb79f",
                "md5": "8faddd29852411b6509c2c02a6d5e6d8",
                "sha256": "af26be1e6705f5f5c210ff8c0aec9f7ea408fc6567cfe92576763aa67e8685c9"
            },
            "downloads": -1,
            "filename": "vectrix-0.0.75.tar.gz",
            "has_sig": false,
            "md5_digest": "8faddd29852411b6509c2c02a6d5e6d8",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<3.13,>=3.11",
            "size": 29081,
            "upload_time": "2024-08-30T17:19:58",
            "upload_time_iso_8601": "2024-08-30T17:19:58.134571Z",
            "url": "https://files.pythonhosted.org/packages/25/26/52b07db1b3548d7e767670eb413b861836e0c84a8e6b63ec387309fdb79f/vectrix-0.0.75.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-08-30 17:19:58",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "vectrix"
}
        
Elapsed time: 0.49268s