# Vedro Valera Validator
[![Codecov](https://img.shields.io/codecov/c/github/vedro-universe/vedro-valera-validator/master.svg?style=flat-square)](https://codecov.io/gh/vedro-universe/vedro-valera-validator)
[![PyPI](https://img.shields.io/pypi/v/vedro-valera-validator.svg?style=flat-square)](https://pypi.python.org/pypi/vedro-valera-validator/)
[![PyPI - Downloads](https://img.shields.io/pypi/dm/vedro-valera-validator?style=flat-square)](https://pypi.python.org/pypi/vedro-valera-validator/)
[![Python Version](https://img.shields.io/pypi/pyversions/vedro-valera-validator.svg?style=flat-square)](https://pypi.python.org/pypi/vedro-valera-validator/)
[vedro-valera-validator](https://pypi.org/project/vedro-valera-validator/) is a plugin for the Vedro framework that utilizes the [valera validator](https://pypi.org/project/valera), a package designed for data validation based on [d42 (district42) schemas](https://d42.vedro.io/docs/quick-start). Valera validator provides a simple yet powerful approach to ensure your data aligns perfectly with your expectations.
## Installation
<details open>
<summary>Quick</summary>
<p>
For a quick installation, you can use a plugin manager as follows:
```shell
$ vedro plugin install vedro-valera-validator
```
</p>
</details>
<details>
<summary>Manual</summary>
<p>
To install manually, follow these steps:
1. Install the package using pip:
```shell
$ pip3 install vedro-valera-validator
```
2. Next, activate the plugin in your `vedro.cfg.py` configuration file:
```python
# ./vedro.cfg.py
import vedro
import vedro_valera_validator
class Config(vedro.Config):
class Plugins(vedro.Config.Plugins):
class ValeraValidator(vedro_valera_validator.ValeraValidator):
enabled = True
```
</p>
</details>
## Usage
Here is an example scenario demonstrating how to decode a base64 encoded string:
```python
# ./scenarios/decode_base64_encoded_string.py
import vedro
from base64 import b64decode
from d42 import schema
class Scenario(vedro.Scenario):
subject = "decode base64 encoded string"
def given(self):
self.encoded = "Y3VjdW1iZXI="
def when(self):
self.result = {
"result": b64decode(self.encoded)
}
def then(self):
assert self.result == schema.dict({
"result": schema.bytes(b"banana")
})
```
Run the test using the command:
```shell
$ vedro run
```
If the expected and actual results don't match, a `ValidationException` will be raised, as illustrated below:
```shell
ValidationException:
- Value <class 'bytes'> at _['result'] must be equal to b'banana', but b'cucumber' given
```
## Additional Resources
For a detailed guide and further information, check out the [documentation](https://vedro.io/docs/integrations/valera-validator).
Raw data
{
"_id": null,
"home_page": "https://github.com/vedro-universe/vedro-valera-validator",
"name": "vedro-valera-validator",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": null,
"author": "Nikita Tsvetkov",
"author_email": "tsv1@fastmail.com",
"download_url": "https://files.pythonhosted.org/packages/01/40/1a78b7012ede515a5548ff6b5d0296f996f5faf5f1c4871faff47d34bcc3/vedro_valera_validator-1.2.0.tar.gz",
"platform": null,
"description": "# Vedro Valera Validator\n\n[![Codecov](https://img.shields.io/codecov/c/github/vedro-universe/vedro-valera-validator/master.svg?style=flat-square)](https://codecov.io/gh/vedro-universe/vedro-valera-validator)\n[![PyPI](https://img.shields.io/pypi/v/vedro-valera-validator.svg?style=flat-square)](https://pypi.python.org/pypi/vedro-valera-validator/)\n[![PyPI - Downloads](https://img.shields.io/pypi/dm/vedro-valera-validator?style=flat-square)](https://pypi.python.org/pypi/vedro-valera-validator/)\n[![Python Version](https://img.shields.io/pypi/pyversions/vedro-valera-validator.svg?style=flat-square)](https://pypi.python.org/pypi/vedro-valera-validator/)\n\n[vedro-valera-validator](https://pypi.org/project/vedro-valera-validator/) is a plugin for the Vedro framework that utilizes the [valera validator](https://pypi.org/project/valera), a package designed for data validation based on [d42 (district42) schemas](https://d42.vedro.io/docs/quick-start). Valera validator provides a simple yet powerful approach to ensure your data aligns perfectly with your expectations.\n\n## Installation\n\n<details open>\n<summary>Quick</summary>\n<p>\n\nFor a quick installation, you can use a plugin manager as follows:\n\n```shell\n$ vedro plugin install vedro-valera-validator\n```\n\n</p>\n</details>\n\n<details>\n<summary>Manual</summary>\n<p>\n\nTo install manually, follow these steps:\n\n1. Install the package using pip:\n\n```shell\n$ pip3 install vedro-valera-validator\n```\n\n2. Next, activate the plugin in your `vedro.cfg.py` configuration file:\n\n```python\n# ./vedro.cfg.py\nimport vedro\nimport vedro_valera_validator\n\nclass Config(vedro.Config):\n\n class Plugins(vedro.Config.Plugins):\n\n class ValeraValidator(vedro_valera_validator.ValeraValidator):\n enabled = True\n```\n\n</p>\n</details>\n\n## Usage\n\nHere is an example scenario demonstrating how to decode a base64 encoded string:\n\n```python\n# ./scenarios/decode_base64_encoded_string.py\nimport vedro\nfrom base64 import b64decode\nfrom d42 import schema\n\nclass Scenario(vedro.Scenario):\n subject = \"decode base64 encoded string\"\n\n def given(self):\n self.encoded = \"Y3VjdW1iZXI=\"\n\n def when(self):\n self.result = {\n \"result\": b64decode(self.encoded)\n }\n\n def then(self):\n assert self.result == schema.dict({\n \"result\": schema.bytes(b\"banana\")\n })\n```\n\nRun the test using the command:\n\n```shell\n$ vedro run\n```\n\nIf the expected and actual results don't match, a `ValidationException` will be raised, as illustrated below:\n\n```shell\nValidationException:\n - Value <class 'bytes'> at _['result'] must be equal to b'banana', but b'cucumber' given\n ```\n\n## Additional Resources\n\nFor a detailed guide and further information, check out the [documentation](https://vedro.io/docs/integrations/valera-validator).\n",
"bugtrack_url": null,
"license": "Apache-2.0",
"summary": "Validator plugin for Vedro testing framework",
"version": "1.2.0",
"project_urls": {
"Docs": "https://vedro.io/docs/integrations/valera-validator",
"GitHub": "https://github.com/vedro-universe/vedro-valera-validator",
"Homepage": "https://github.com/vedro-universe/vedro-valera-validator"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "3a2d686ff614938ba57ba12c31c52727106cbf70dcd96af98f6b0fc8be5ecc26",
"md5": "5bacea13f6555c59edaaa79ea848ced6",
"sha256": "4ec3027bb4f0806efa298be936226c0b8856615a3320695156512c454b0ea642"
},
"downloads": -1,
"filename": "vedro_valera_validator-1.2.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "5bacea13f6555c59edaaa79ea848ced6",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 7861,
"upload_time": "2024-10-21T16:28:31",
"upload_time_iso_8601": "2024-10-21T16:28:31.633958Z",
"url": "https://files.pythonhosted.org/packages/3a/2d/686ff614938ba57ba12c31c52727106cbf70dcd96af98f6b0fc8be5ecc26/vedro_valera_validator-1.2.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "01401a78b7012ede515a5548ff6b5d0296f996f5faf5f1c4871faff47d34bcc3",
"md5": "01d0eb9e6fb7d377b4d84f023873093b",
"sha256": "ed09b79a48b0489a265e40ee98a77856145f08d94dbe839db2031ab64425fd20"
},
"downloads": -1,
"filename": "vedro_valera_validator-1.2.0.tar.gz",
"has_sig": false,
"md5_digest": "01d0eb9e6fb7d377b4d84f023873093b",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 8061,
"upload_time": "2024-10-21T16:28:33",
"upload_time_iso_8601": "2024-10-21T16:28:33.164528Z",
"url": "https://files.pythonhosted.org/packages/01/40/1a78b7012ede515a5548ff6b5d0296f996f5faf5f1c4871faff47d34bcc3/vedro_valera_validator-1.2.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-10-21 16:28:33",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "vedro-universe",
"github_project": "vedro-valera-validator",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [
{
"name": "vedro",
"specs": [
[
">=",
"1.5"
],
[
"<",
"2.0"
]
]
},
{
"name": "d42",
"specs": [
[
">=",
"1.5"
],
[
"<",
"3.0"
]
]
}
],
"lcname": "vedro-valera-validator"
}