# ⚙️ VigorVision





> **VigorVision** — an advanced, modular AI vision framework built by **Vigor Industries Limited**, designed for **object detection**, **segmentation**, and **industry-specific visual intelligence**.
---
## 🧭 Table of Contents
1. [Overview](#-overview)
2. [Features](#-features)
3. [Installation](#-installation)
4. [Quick Start](#-quick-start)
5. [Model Architecture](#-model-architecture)
6. [Configuration](#-configuration)
7. [Training](#-training)
8. [Visualization & Logging](#-visualization--logging)
9. [Project Structure](#-project-structure)
10. [Contributing](#-contributing)
11. [License](#-license)
12. [Contact](#-contact)
---
## 🧠 Overview
**VigorVision** provides a fully-featured, modular AI framework for vision applications such as:
- Industrial anomaly detection
- Object tracking and classification
- Manufacturing process vision systems
- Smart quality control and inspection
It leverages **PyTorch**, **Albumentations**, and **Weights & Biases** for maximum performance, extensibility, and interpretability.
---
## ✨ Features
| Category | Highlights |
|-----------|-------------|
| 🧩 **Architecture** | Modular design with customizable backbone, neck, and detection head |
| 🧠 **Training Engine** | Optimized multi-threaded dataloaders with adaptive batch handling |
| 🧮 **Anchors** | Auto-anchor analysis and smart anchor selection for detection models |
| 📈 **Visualization** | Native support for **TensorBoard** and **Weights & Biases (wandb)** |
| 🔧 **Data Augmentation** | Albumentations-based pipeline for advanced transformations |
| ⚡ **Performance** | FP16 (mixed precision) and multi-GPU training support |
| 🧰 **Utilities** | Built-in tools for dataset validation and metrics computation |
---
## ⚙️ Installation
### ✅ From PyPI
```bash
pip install vigorvision
pip install torch>=2.0.0
pip install torchvision>=0.15.0
pip install albumentations>=1.3.0
pip install opencv-python>=4.8.0
pip install numpy>=1.24.0
pip install tqdm>=4.65.0
pip install pyyaml>=6.0
pip install tensorboard>=2.13.0
pip install wandb>=0.16.0
pip install scikit-learn>=1.3.0
pip install scipy>=1.11.0
pip install matplotlib>=3.8.0
```
Raw data
{
"_id": null,
"home_page": null,
"name": "vigorvision",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "deep-learning, object-detection, vision, AI, Vigor, torch, computer-vision",
"author": null,
"author_email": "Vigor Industries Limited <contact@vigorindustries.com>",
"download_url": "https://files.pythonhosted.org/packages/b3/f0/0a26ad659a97a81aa6090ff94a5227916a368fd84ea75aa39b3993187648/vigorvision-2.0.2.tar.gz",
"platform": null,
"description": "# \u2699\ufe0f VigorVision\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n> **VigorVision** \u2014 an advanced, modular AI vision framework built by **Vigor Industries Limited**, designed for **object detection**, **segmentation**, and **industry-specific visual intelligence**.\r\n\r\n---\r\n\r\n## \ud83e\udded Table of Contents\r\n\r\n1. [Overview](#-overview)\r\n2. [Features](#-features)\r\n3. [Installation](#-installation)\r\n4. [Quick Start](#-quick-start)\r\n5. [Model Architecture](#-model-architecture)\r\n6. [Configuration](#-configuration)\r\n7. [Training](#-training)\r\n8. [Visualization & Logging](#-visualization--logging)\r\n9. [Project Structure](#-project-structure)\r\n10. [Contributing](#-contributing)\r\n11. [License](#-license)\r\n12. [Contact](#-contact)\r\n\r\n---\r\n\r\n## \ud83e\udde0 Overview\r\n\r\n**VigorVision** provides a fully-featured, modular AI framework for vision applications such as:\r\n\r\n- Industrial anomaly detection \r\n- Object tracking and classification \r\n- Manufacturing process vision systems \r\n- Smart quality control and inspection \r\n\r\nIt leverages **PyTorch**, **Albumentations**, and **Weights & Biases** for maximum performance, extensibility, and interpretability.\r\n\r\n---\r\n\r\n## \u2728 Features\r\n\r\n| Category | Highlights |\r\n|-----------|-------------|\r\n| \ud83e\udde9 **Architecture** | Modular design with customizable backbone, neck, and detection head |\r\n| \ud83e\udde0 **Training Engine** | Optimized multi-threaded dataloaders with adaptive batch handling |\r\n| \ud83e\uddee **Anchors** | Auto-anchor analysis and smart anchor selection for detection models |\r\n| \ud83d\udcc8 **Visualization** | Native support for **TensorBoard** and **Weights & Biases (wandb)** |\r\n| \ud83d\udd27 **Data Augmentation** | Albumentations-based pipeline for advanced transformations |\r\n| \u26a1 **Performance** | FP16 (mixed precision) and multi-GPU training support |\r\n| \ud83e\uddf0 **Utilities** | Built-in tools for dataset validation and metrics computation |\r\n\r\n---\r\n\r\n## \u2699\ufe0f Installation\r\n\r\n### \u2705 From PyPI\r\n```bash\r\npip install vigorvision\r\npip install torch>=2.0.0\r\npip install torchvision>=0.15.0\r\npip install albumentations>=1.3.0\r\npip install opencv-python>=4.8.0\r\npip install numpy>=1.24.0\r\npip install tqdm>=4.65.0\r\npip install pyyaml>=6.0\r\npip install tensorboard>=2.13.0\r\npip install wandb>=0.16.0\r\npip install scikit-learn>=1.3.0\r\npip install scipy>=1.11.0\r\npip install matplotlib>=3.8.0\r\n```\r\n",
"bugtrack_url": null,
"license": null,
"summary": "Advanced AI vision and object detection framework by Vigor Industries Limited.",
"version": "2.0.2",
"project_urls": null,
"split_keywords": [
"deep-learning",
" object-detection",
" vision",
" ai",
" vigor",
" torch",
" computer-vision"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "4866ac540daefee5c8521c69820264e2f719fce844b11cd654b518f3e152bd39",
"md5": "4229a7310f5ae1f0f546d554253ce5e8",
"sha256": "50ac54d9fb2ad01ddf1266698fe3dda21001fc4a80a8aa0f4f6d7ab1c833a0bc"
},
"downloads": -1,
"filename": "vigorvision-2.0.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "4229a7310f5ae1f0f546d554253ce5e8",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 72182,
"upload_time": "2025-10-27T13:58:08",
"upload_time_iso_8601": "2025-10-27T13:58:08.861070Z",
"url": "https://files.pythonhosted.org/packages/48/66/ac540daefee5c8521c69820264e2f719fce844b11cd654b518f3e152bd39/vigorvision-2.0.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "b3f00a26ad659a97a81aa6090ff94a5227916a368fd84ea75aa39b3993187648",
"md5": "f4804c2649d2ce94bc23295d9e6e9691",
"sha256": "27258c0d9d9c074916875ec866597f4ee1df94c1d1314d0c91b6a0c25dc6806e"
},
"downloads": -1,
"filename": "vigorvision-2.0.2.tar.gz",
"has_sig": false,
"md5_digest": "f4804c2649d2ce94bc23295d9e6e9691",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 58709,
"upload_time": "2025-10-27T13:58:10",
"upload_time_iso_8601": "2025-10-27T13:58:10.405082Z",
"url": "https://files.pythonhosted.org/packages/b3/f0/0a26ad659a97a81aa6090ff94a5227916a368fd84ea75aa39b3993187648/vigorvision-2.0.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-10-27 13:58:10",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "vigorvision"
}