vima


Namevima JSON
Version 0.0.2 PyPI version JSON
download
home_pagehttps://github.com/kyegomez/vima
Summaryvima - Pytorch
upload_time2023-09-13 15:31:47
maintainer
docs_urlNone
authorKye Gomez
requires_python>=3.6,<4.0
licenseMIT
keywords artificial intelligence deep learning optimizers prompt engineering
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![Multi-Modality](agorabanner.png)](https://discord.gg/qUtxnK2NMf)

# VIM
A simple implementation of "VIMA: General Robot Manipulation with Multimodal Prompts"

[Original implementation Link](https://github.com/vimalabs/VIMA)

# Appreciation
* Lucidrains
* Agorians

# Install
`pip install vima`

---

# Usage
```python
import torch
from vima import Vima

# Generate a random input sequence
x = torch.randint(0, 256, (1, 1024)).cuda()

# Initialize VIMA model
model = Vima()

# Pass the input sequence through the model
output = model(x)
```

## MultiModal Iteration
* Pass in text and and image tensors into vima
```python
import torch
from vima.vima import VimaMultiModal

#usage
img = torch.randn(1, 3, 256, 256)
text = torch.randint(0, 20000, (1, 1024))


model = VimaMultiModal()
output = model(text, img)

```

# License
MIT

# Citations
```latex
@inproceedings{jiang2023vima,
  title     = {VIMA: General Robot Manipulation with Multimodal Prompts},
  author    = {Yunfan Jiang and Agrim Gupta and Zichen Zhang and Guanzhi Wang and Yongqiang Dou and Yanjun Chen and Li Fei-Fei and Anima Anandkumar and Yuke Zhu and Linxi Fan},
  booktitle = {Fortieth International Conference on Machine Learning},
  year      = {2023}
}
```
            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/kyegomez/vima",
    "name": "vima",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.6,<4.0",
    "maintainer_email": "",
    "keywords": "artificial intelligence,deep learning,optimizers,Prompt Engineering",
    "author": "Kye Gomez",
    "author_email": "kye@apac.ai",
    "download_url": "https://files.pythonhosted.org/packages/a3/49/6f37fd63826ab028595f674257eef6a88aec0f8e2b1ebabe6319a2e86dab/vima-0.0.2.tar.gz",
    "platform": null,
    "description": "[![Multi-Modality](agorabanner.png)](https://discord.gg/qUtxnK2NMf)\n\n# VIM\nA simple implementation of \"VIMA: General Robot Manipulation with Multimodal Prompts\"\n\n[Original implementation Link](https://github.com/vimalabs/VIMA)\n\n# Appreciation\n* Lucidrains\n* Agorians\n\n# Install\n`pip install vima`\n\n---\n\n# Usage\n```python\nimport torch\nfrom vima import Vima\n\n# Generate a random input sequence\nx = torch.randint(0, 256, (1, 1024)).cuda()\n\n# Initialize VIMA model\nmodel = Vima()\n\n# Pass the input sequence through the model\noutput = model(x)\n```\n\n## MultiModal Iteration\n* Pass in text and and image tensors into vima\n```python\nimport torch\nfrom vima.vima import VimaMultiModal\n\n#usage\nimg = torch.randn(1, 3, 256, 256)\ntext = torch.randint(0, 20000, (1, 1024))\n\n\nmodel = VimaMultiModal()\noutput = model(text, img)\n\n```\n\n# License\nMIT\n\n# Citations\n```latex\n@inproceedings{jiang2023vima,\n  title     = {VIMA: General Robot Manipulation with Multimodal Prompts},\n  author    = {Yunfan Jiang and Agrim Gupta and Zichen Zhang and Guanzhi Wang and Yongqiang Dou and Yanjun Chen and Li Fei-Fei and Anima Anandkumar and Yuke Zhu and Linxi Fan},\n  booktitle = {Fortieth International Conference on Machine Learning},\n  year      = {2023}\n}\n```",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "vima - Pytorch",
    "version": "0.0.2",
    "project_urls": {
        "Homepage": "https://github.com/kyegomez/vima",
        "Repository": "https://github.com/kyegomez/vima"
    },
    "split_keywords": [
        "artificial intelligence",
        "deep learning",
        "optimizers",
        "prompt engineering"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "0610e7d1f2d201507e3e9d09a1d488d31b4125fc2384955e996fc04ab021c411",
                "md5": "3798275df741489b8684864127629c98",
                "sha256": "8e2ba3a331d7566a043aea4c1ac5ceb6a54a2e141bc6c4049214c030ca6a26ee"
            },
            "downloads": -1,
            "filename": "vima-0.0.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "3798275df741489b8684864127629c98",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6,<4.0",
            "size": 26282,
            "upload_time": "2023-09-13T15:31:46",
            "upload_time_iso_8601": "2023-09-13T15:31:46.077624Z",
            "url": "https://files.pythonhosted.org/packages/06/10/e7d1f2d201507e3e9d09a1d488d31b4125fc2384955e996fc04ab021c411/vima-0.0.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a3496f37fd63826ab028595f674257eef6a88aec0f8e2b1ebabe6319a2e86dab",
                "md5": "6408b8791ad9d7bf4a9b8b5875463e2e",
                "sha256": "eb458c3f26586668547962bb0ad031fa63475f62f783682ef84416b279829bf8"
            },
            "downloads": -1,
            "filename": "vima-0.0.2.tar.gz",
            "has_sig": false,
            "md5_digest": "6408b8791ad9d7bf4a9b8b5875463e2e",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6,<4.0",
            "size": 25277,
            "upload_time": "2023-09-13T15:31:47",
            "upload_time_iso_8601": "2023-09-13T15:31:47.730543Z",
            "url": "https://files.pythonhosted.org/packages/a3/49/6f37fd63826ab028595f674257eef6a88aec0f8e2b1ebabe6319a2e86dab/vima-0.0.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-09-13 15:31:47",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "kyegomez",
    "github_project": "vima",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "vima"
}
        
Elapsed time: 0.14582s