Name | visChem JSON |
Version |
0.1.3
JSON |
| download |
home_page | |
Summary | A tool for chemical space visualization and clustering. |
upload_time | 2023-09-05 22:35:12 |
maintainer | |
docs_url | None |
author | Steve Niu |
requires_python | |
license | |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# visChem v0.1.3
Steve Niu[^1]
`visChem` is a Python module designed for visualizing chemical space using UMAP and clustering techniques. This tool facilitates the transformation of chemical structures into a 2D space and visualizes clusters of similar compounds.
## Installation
Install using pypi
```
pip install visChem
```
Install using conda
```
conda install -c stevexniu vischem
```
**Note**: Some packages like `rdkit` might require special installation instructions. Please refer to their official documentation for details.
## Usage
1. See `example.py` for details.
2. Run ```python example.py```.
The `example.py` script will execute the main function which:
- Load example 1000 SMILES from RDKit NCI/first_5K.smi.
- Converts SMILES to molecular representations.
- Generates molecular fingerprints.
- Computes Tanimoto similarity.
- Reduces dimensionality using UMAP.
- Performs clustering.
- Visualizes the chemical structures in the clustered chemical space below.
![output](output_image.png)
Refer to `example.py` for details and any potential modifications you might want to make for your specific use case.
[^1]: Safety Assessment, niu.steve@gene.com
Raw data
{
"_id": null,
"home_page": "",
"name": "visChem",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "",
"author": "Steve Niu",
"author_email": "stevexniu@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/95/68/9ce75fbe0644c519eda6d94e0764bccc4421146da777a4bedbd51024ca1a/visChem-0.1.3.tar.gz",
"platform": null,
"description": "# visChem v0.1.3\n\nSteve Niu[^1]\n\n`visChem` is a Python module designed for visualizing chemical space using UMAP and clustering techniques. This tool facilitates the transformation of chemical structures into a 2D space and visualizes clusters of similar compounds.\n\n\n## Installation\nInstall using pypi\n```\npip install visChem\n```\n\nInstall using conda\n```\nconda install -c stevexniu vischem\n```\n\n**Note**: Some packages like `rdkit` might require special installation instructions. Please refer to their official documentation for details.\n\n## Usage\n\n1. See `example.py` for details.\n2. Run ```python example.py```.\n\nThe `example.py` script will execute the main function which: \n- Load example 1000 SMILES from RDKit NCI/first_5K.smi. \n- Converts SMILES to molecular representations. \n- Generates molecular fingerprints. \n- Computes Tanimoto similarity. \n- Reduces dimensionality using UMAP. \n- Performs clustering. \n- Visualizes the chemical structures in the clustered chemical space below.\n\n![output](output_image.png)\n\nRefer to `example.py` for details and any potential modifications you might want to make for your specific use case.\n\n[^1]: Safety Assessment, niu.steve@gene.com\n",
"bugtrack_url": null,
"license": "",
"summary": "A tool for chemical space visualization and clustering.",
"version": "0.1.3",
"project_urls": null,
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "4172b77f86f89a11dd7f81b8025e3ece22ecc0eed04b272061d29ef904089acd",
"md5": "9997f7114a81d694360fd16fb64659ba",
"sha256": "a69fa691a0e5da9695ff06b0eec3fc658dc6d39d51ee451f36c5b78d890840fe"
},
"downloads": -1,
"filename": "visChem-0.1.3-py3-none-any.whl",
"has_sig": false,
"md5_digest": "9997f7114a81d694360fd16fb64659ba",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 32076,
"upload_time": "2023-09-05T22:35:11",
"upload_time_iso_8601": "2023-09-05T22:35:11.280562Z",
"url": "https://files.pythonhosted.org/packages/41/72/b77f86f89a11dd7f81b8025e3ece22ecc0eed04b272061d29ef904089acd/visChem-0.1.3-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "95689ce75fbe0644c519eda6d94e0764bccc4421146da777a4bedbd51024ca1a",
"md5": "f288138a055be7fe9727d5322c33d87a",
"sha256": "d50402f886b78a03f34652b9c77d3f3d7716a8e8e8b444f57f2d1330c3efd351"
},
"downloads": -1,
"filename": "visChem-0.1.3.tar.gz",
"has_sig": false,
"md5_digest": "f288138a055be7fe9727d5322c33d87a",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 29519,
"upload_time": "2023-09-05T22:35:12",
"upload_time_iso_8601": "2023-09-05T22:35:12.868167Z",
"url": "https://files.pythonhosted.org/packages/95/68/9ce75fbe0644c519eda6d94e0764bccc4421146da777a4bedbd51024ca1a/visChem-0.1.3.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-09-05 22:35:12",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "vischem"
}