vision_models_evaluation
================
<!-- WARNING: THIS FILE WAS AUTOGENERATED! DO NOT EDIT! -->
## Install
To install the library, just run:
``` sh
pip install vision_models_evaluation
```
## How to use
This library provides a method that can help you in the process of model
evaluation. Using the [scikit-learn validation
techniques](https://scikit-learn.org/stable/modules/cross_validation.html#cross-validation-iterators)
you can validate your deep learning models.
In order to validate your model, you will need to build and train
various versions of it (for example, using a KFold validation, it is
needed to build five different models).
For doing so, you need to provide: the `DataBlock` hparams
(hyperparameters), the `DataLoader` hparams, the technique used to split
the data, the `Learner` construction hparams, the learning mode (whether
to use a pretrained model or not: `fit_one_cycle` or `finetune`) and the
`Learner` training hparams. So, the first step is to define them all:
``` python
db_hparams = {
"blocks": (ImageBlock, MaskBlock(codes)),
"get_items": partial(get_image_files, folders=['train']),
"get_y": get_y_fn,
"item_tfms": [Resize((480,640)), TargetMaskConvertTransform(), transformPipeline],
"batch_tfms": Normalize.from_stats(*imagenet_stats)
}
dl_hparams = {
"source": path_images,
"bs": 4
}
technique = KFold(n_splits = 5)
learner_hparams = {
"arch": resnet18,
"pretrained": True,
"metrics": [DiceMulti()]
}
learning_hparams = {
"epochs": 10,
"base_lr": 0.001,
"freeze_epochs": 1
}
learning_mode = "finetune"
```
Then, you need to call the `evaluate` method with those defined hparams.
After the execution, the method will return a dictionary of results (for
each metric used to test the model, the value obtained in each fold).
``` python
r = evaluate(
db_hparams,
dl_hparams,
technique,
learner_hparams,
learning_hparams,
learning_mode
)
```
Finally, you can plot the metrics using a boxplot from pandas, for
example:
``` python
import pandas as pd
df = pd.DataFrame(r)
df.boxplot("DiceMulti");
print(
df["DiceMulti"].mean(),
df["DiceMulti"].std()
)
```
![download.png](index_files/figure-commonmark/406aa26d-1-download.png)
You can use this method to evaluate your model, but you can also use it
to evaluate several models with distinct hparams: you can get the
results for each of them and then plot the average of their metrics.
Raw data
{
"_id": null,
"home_page": "https://github.com/ruescog/vision_models_evaluation",
"name": "vision-models-evaluation",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": "",
"keywords": "nbdev jupyter notebook python",
"author": "ruescog",
"author_email": "ruescog@unirioja.es",
"download_url": "https://files.pythonhosted.org/packages/47/33/2f80803d32999dc7f2ec4ea7352f58a338a30caaa7476d1f957b233d526b/vision_models_evaluation-0.0.5.tar.gz",
"platform": null,
"description": "vision_models_evaluation\n================\n\n<!-- WARNING: THIS FILE WAS AUTOGENERATED! DO NOT EDIT! -->\n\n## Install\n\nTo install the library, just run:\n\n``` sh\npip install vision_models_evaluation\n```\n\n## How to use\n\nThis library provides a method that can help you in the process of model\nevaluation. Using the [scikit-learn validation\ntechniques](https://scikit-learn.org/stable/modules/cross_validation.html#cross-validation-iterators)\nyou can validate your deep learning models.\n\nIn order to validate your model, you will need to build and train\nvarious versions of it (for example, using a KFold validation, it is\nneeded to build five different models).\n\nFor doing so, you need to provide: the `DataBlock` hparams\n(hyperparameters), the `DataLoader` hparams, the technique used to split\nthe data, the `Learner` construction hparams, the learning mode (whether\nto use a pretrained model or not: `fit_one_cycle` or `finetune`) and the\n`Learner` training hparams. So, the first step is to define them all:\n\n``` python\ndb_hparams = {\n \"blocks\": (ImageBlock, MaskBlock(codes)),\n \"get_items\": partial(get_image_files, folders=['train']),\n \"get_y\": get_y_fn,\n \"item_tfms\": [Resize((480,640)), TargetMaskConvertTransform(), transformPipeline],\n \"batch_tfms\": Normalize.from_stats(*imagenet_stats)\n}\ndl_hparams = {\n \"source\": path_images,\n \"bs\": 4\n}\ntechnique = KFold(n_splits = 5)\nlearner_hparams = {\n \"arch\": resnet18,\n \"pretrained\": True,\n \"metrics\": [DiceMulti()]\n}\nlearning_hparams = {\n \"epochs\": 10,\n \"base_lr\": 0.001,\n \"freeze_epochs\": 1\n}\nlearning_mode = \"finetune\"\n```\n\nThen, you need to call the `evaluate` method with those defined hparams.\nAfter the execution, the method will return a dictionary of results (for\neach metric used to test the model, the value obtained in each fold).\n\n``` python\nr = evaluate(\n db_hparams,\n dl_hparams,\n technique,\n learner_hparams,\n learning_hparams,\n learning_mode\n)\n```\n\nFinally, you can plot the metrics using a boxplot from pandas, for\nexample:\n\n``` python\nimport pandas as pd\n\ndf = pd.DataFrame(r)\ndf.boxplot(\"DiceMulti\");\n\nprint(\n df[\"DiceMulti\"].mean(),\n df[\"DiceMulti\"].std()\n)\n```\n\n![download.png](index_files/figure-commonmark/406aa26d-1-download.png)\n\nYou can use this method to evaluate your model, but you can also use it\nto evaluate several models with distinct hparams: you can get the\nresults for each of them and then plot the average of their metrics.\n\n\n",
"bugtrack_url": null,
"license": "Apache Software License 2.0",
"summary": "A library to test fastai learners using some evaluation techniques.",
"version": "0.0.5",
"project_urls": {
"Homepage": "https://github.com/ruescog/vision_models_evaluation"
},
"split_keywords": [
"nbdev",
"jupyter",
"notebook",
"python"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "4aec5deb93bddc91e12a4f05a4823fb50d431c5fea214c1a1470662e6deb05d7",
"md5": "215458db5cf77dded07126fa6dc1c93e",
"sha256": "bb291dc4644bdfbd9a8be4bed67bb7254180f096484260e24701c8b979e99c7b"
},
"downloads": -1,
"filename": "vision_models_evaluation-0.0.5-py3-none-any.whl",
"has_sig": false,
"md5_digest": "215458db5cf77dded07126fa6dc1c93e",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7",
"size": 9282,
"upload_time": "2023-09-26T08:47:40",
"upload_time_iso_8601": "2023-09-26T08:47:40.840802Z",
"url": "https://files.pythonhosted.org/packages/4a/ec/5deb93bddc91e12a4f05a4823fb50d431c5fea214c1a1470662e6deb05d7/vision_models_evaluation-0.0.5-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "47332f80803d32999dc7f2ec4ea7352f58a338a30caaa7476d1f957b233d526b",
"md5": "b2611f359984c5c446197e9117439ac4",
"sha256": "c99af4261185024951c1002405d39ce736ff46a7529521a471d3044dc9f5c35b"
},
"downloads": -1,
"filename": "vision_models_evaluation-0.0.5.tar.gz",
"has_sig": false,
"md5_digest": "b2611f359984c5c446197e9117439ac4",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 9613,
"upload_time": "2023-09-26T08:47:42",
"upload_time_iso_8601": "2023-09-26T08:47:42.355707Z",
"url": "https://files.pythonhosted.org/packages/47/33/2f80803d32999dc7f2ec4ea7352f58a338a30caaa7476d1f957b233d526b/vision_models_evaluation-0.0.5.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-09-26 08:47:42",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "ruescog",
"github_project": "vision_models_evaluation",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "vision-models-evaluation"
}