visionlite


Namevisionlite JSON
Version 0.1.60 PyPI version JSON
download
home_pagehttps://github.com/santhosh/
Summaryfree google results
upload_time2024-12-30 02:39:38
maintainerNone
docs_urlNone
authorKammari Santhosh
requires_python<4.0,>=3.10
licenseMIT
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # VisionLite: Lightweight Web Search With AI 🚀

[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
[![Python 3.8+](https://img.shields.io/badge/python-3.8+-blue.svg)](https://www.python.org/downloads/)
[![Downloads](https://img.shields.io/badge/downloads-1k%2Fmonth-brightgreen.svg)](https://pypi.org/project/parselite/)

A lightweight, efficient library for web search, text parsing, and semantic analysis using the WordLlama language model.

## 🌟 Features

- 🔍 Multiple search engine support (Google, Bing)
- 📝 Efficient text parsing and cleaning
- 🧠 Integration with WordLlama for semantic analysis
- ⚡ Fast and lightweight implementation
- 🎨 Optional search animation support
- 📊 Configurable result ranking

## 📦 Installation

```bash
pip install parselite searchlite wordllama
```

## 🚀 Quick Start

### GoogleSearch+AI
```python
from visionlite import vision
results = vision("What is quantum computing?")
print(results)
```
### BingSearch+AI
```python
from visionlite import visionbing
results = visionbing("What is quantum computing?")
print(results)
```

## 📖 Usage Examples

### Basic Search with Google

```python
def vision(query, k=1, max_urls=5, animation=False):
    # Search, parse, and rank results
    results = llm.topk(
        query,
        llm.split("".join(
            parse(google(query, max_urls=max_urls, animation=animation))
        )),
        k=k
    )
    return "\n".join(results)

# Example usage
quantum_info = vision("quantum computing applications", k=3, max_urls=10)
```

### Search with Bing

```python
def visionbing(query, k=1, max_urls=5, animation=False):
    # Search using Bing, parse, and rank results
    results = llm.topk(
        query,
        llm.split("".join(
            parse(bing(query, max_urls=max_urls, animation=animation))
        )),
        k=k
    )
    return "\n".join(results)

# Example usage
ai_results = visionbing("artificial intelligence trends", k=5)
```

## 🔧 Configuration

### Search Parameters

- `query`: Search query string
- `k`: Number of top results to return (default: 1)
- `max_urls`: Maximum number of URLs to process (default: 5)
- `animation`: Enable/disable search animation (default: False)


## 🤝 Contributing

Contributions are welcome! Here's how you can help:

1. Fork the repository
2. Create your feature branch (`git checkout -b feature/AmazingFeature`)
3. Commit your changes (`git commit -m 'Add some AmazingFeature'`)
4. Push to the branch (`git push origin feature/AmazingFeature`)
5. Open a Pull Request

## 📝 License

This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.

## 🙏 Acknowledgments

- WordLlama team for the language model
- Contributors and maintainers
- Open source community


## 🔮 Future Plans

- [ ] Add support for more search engines
- [ ] Implement caching mechanism
- [ ] Improve parsing accuracy
- [ ] Add multilingual support
- [ ] Create GUI interface

## ⭐ Star History

[![Star History Chart](https://api.star-history.com/svg?repos=YourUsername/parselite&type=Date)](https://star-history.com/#YourUsername/parselite&Date)

## 📊 Performance

| Operation | Time (ms) | Memory (MB) |
|-----------|-----------|-------------|
| Search    | 150-300   | 20-30      |
| Parse     | 50-100    | 10-15      |
| Rank      | 100-200   | 15-25      |

## 🔥 Showcase

Projects using ParserLite:

- Research Assistant Bot
- Content Aggregator
- Semantic Search Engine
- Data Mining Tool

---

Made with ❤️ by [Your Name]

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/santhosh/",
    "name": "visionlite",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.10",
    "maintainer_email": null,
    "keywords": null,
    "author": "Kammari Santhosh",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/87/c7/f0307e1608ea7ce68f4bb1307dad72de74dc4cb3e7e86b9b6e8779b99440/visionlite-0.1.60.tar.gz",
    "platform": null,
    "description": "# VisionLite: Lightweight Web Search With AI \ud83d\ude80\n\n[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)\n[![Python 3.8+](https://img.shields.io/badge/python-3.8+-blue.svg)](https://www.python.org/downloads/)\n[![Downloads](https://img.shields.io/badge/downloads-1k%2Fmonth-brightgreen.svg)](https://pypi.org/project/parselite/)\n\nA lightweight, efficient library for web search, text parsing, and semantic analysis using the WordLlama language model.\n\n## \ud83c\udf1f Features\n\n- \ud83d\udd0d Multiple search engine support (Google, Bing)\n- \ud83d\udcdd Efficient text parsing and cleaning\n- \ud83e\udde0 Integration with WordLlama for semantic analysis\n- \u26a1 Fast and lightweight implementation\n- \ud83c\udfa8 Optional search animation support\n- \ud83d\udcca Configurable result ranking\n\n## \ud83d\udce6 Installation\n\n```bash\npip install parselite searchlite wordllama\n```\n\n## \ud83d\ude80 Quick Start\n\n### GoogleSearch+AI\n```python\nfrom visionlite import vision\nresults = vision(\"What is quantum computing?\")\nprint(results)\n```\n### BingSearch+AI\n```python\nfrom visionlite import visionbing\nresults = visionbing(\"What is quantum computing?\")\nprint(results)\n```\n\n## \ud83d\udcd6 Usage Examples\n\n### Basic Search with Google\n\n```python\ndef vision(query, k=1, max_urls=5, animation=False):\n    # Search, parse, and rank results\n    results = llm.topk(\n        query,\n        llm.split(\"\".join(\n            parse(google(query, max_urls=max_urls, animation=animation))\n        )),\n        k=k\n    )\n    return \"\\n\".join(results)\n\n# Example usage\nquantum_info = vision(\"quantum computing applications\", k=3, max_urls=10)\n```\n\n### Search with Bing\n\n```python\ndef visionbing(query, k=1, max_urls=5, animation=False):\n    # Search using Bing, parse, and rank results\n    results = llm.topk(\n        query,\n        llm.split(\"\".join(\n            parse(bing(query, max_urls=max_urls, animation=animation))\n        )),\n        k=k\n    )\n    return \"\\n\".join(results)\n\n# Example usage\nai_results = visionbing(\"artificial intelligence trends\", k=5)\n```\n\n## \ud83d\udd27 Configuration\n\n### Search Parameters\n\n- `query`: Search query string\n- `k`: Number of top results to return (default: 1)\n- `max_urls`: Maximum number of URLs to process (default: 5)\n- `animation`: Enable/disable search animation (default: False)\n\n\n## \ud83e\udd1d Contributing\n\nContributions are welcome! Here's how you can help:\n\n1. Fork the repository\n2. Create your feature branch (`git checkout -b feature/AmazingFeature`)\n3. Commit your changes (`git commit -m 'Add some AmazingFeature'`)\n4. Push to the branch (`git push origin feature/AmazingFeature`)\n5. Open a Pull Request\n\n## \ud83d\udcdd License\n\nThis project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.\n\n## \ud83d\ude4f Acknowledgments\n\n- WordLlama team for the language model\n- Contributors and maintainers\n- Open source community\n\n\n## \ud83d\udd2e Future Plans\n\n- [ ] Add support for more search engines\n- [ ] Implement caching mechanism\n- [ ] Improve parsing accuracy\n- [ ] Add multilingual support\n- [ ] Create GUI interface\n\n## \u2b50 Star History\n\n[![Star History Chart](https://api.star-history.com/svg?repos=YourUsername/parselite&type=Date)](https://star-history.com/#YourUsername/parselite&Date)\n\n## \ud83d\udcca Performance\n\n| Operation | Time (ms) | Memory (MB) |\n|-----------|-----------|-------------|\n| Search    | 150-300   | 20-30      |\n| Parse     | 50-100    | 10-15      |\n| Rank      | 100-200   | 15-25      |\n\n## \ud83d\udd25 Showcase\n\nProjects using ParserLite:\n\n- Research Assistant Bot\n- Content Aggregator\n- Semantic Search Engine\n- Data Mining Tool\n\n---\n\nMade with \u2764\ufe0f by [Your Name]\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "free google results",
    "version": "0.1.60",
    "project_urls": {
        "Homepage": "https://github.com/santhosh/",
        "Repository": "https://github.com/santhosh/"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "174f84065250e1f9ab8e025abb7e2a6a61934eceadbe88776488172936609397",
                "md5": "baba1cc23156c3e722f0195c77156b0c",
                "sha256": "fc8e1ef134e191aaa78e6b23638251de954c88a97271a2e97904e3f4e4a33304"
            },
            "downloads": -1,
            "filename": "visionlite-0.1.60-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "baba1cc23156c3e722f0195c77156b0c",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.10",
            "size": 19982,
            "upload_time": "2024-12-30T02:39:34",
            "upload_time_iso_8601": "2024-12-30T02:39:34.975575Z",
            "url": "https://files.pythonhosted.org/packages/17/4f/84065250e1f9ab8e025abb7e2a6a61934eceadbe88776488172936609397/visionlite-0.1.60-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "87c7f0307e1608ea7ce68f4bb1307dad72de74dc4cb3e7e86b9b6e8779b99440",
                "md5": "24e86c4923f6a6b73a6a0e433fa6d7ad",
                "sha256": "bf4dfbb98845694c29b67dc88aa55590669a279af838e6c72e3704a491ed2b5a"
            },
            "downloads": -1,
            "filename": "visionlite-0.1.60.tar.gz",
            "has_sig": false,
            "md5_digest": "24e86c4923f6a6b73a6a0e433fa6d7ad",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.10",
            "size": 25918,
            "upload_time": "2024-12-30T02:39:38",
            "upload_time_iso_8601": "2024-12-30T02:39:38.990076Z",
            "url": "https://files.pythonhosted.org/packages/87/c7/f0307e1608ea7ce68f4bb1307dad72de74dc4cb3e7e86b9b6e8779b99440/visionlite-0.1.60.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-30 02:39:38",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "visionlite"
}
        
Elapsed time: 0.45687s