# VisionLite: Lightweight Web Search With AI 🚀
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
[![Python 3.8+](https://img.shields.io/badge/python-3.8+-blue.svg)](https://www.python.org/downloads/)
[![Downloads](https://img.shields.io/badge/downloads-1k%2Fmonth-brightgreen.svg)](https://pypi.org/project/parselite/)
A lightweight, efficient library for web search, text parsing, and semantic analysis using the WordLlama language model.
## 🌟 Features
- 🔍 Multiple search engine support (Google, Bing)
- 📝 Efficient text parsing and cleaning
- 🧠 Integration with WordLlama for semantic analysis
- ⚡ Fast and lightweight implementation
- 🎨 Optional search animation support
- 📊 Configurable result ranking
## 📦 Installation
```bash
pip install parselite searchlite wordllama
```
## 🚀 Quick Start
### GoogleSearch+AI
```python
from visionlite import vision
results = vision("What is quantum computing?")
print(results)
```
### BingSearch+AI
```python
from visionlite import visionbing
results = visionbing("What is quantum computing?")
print(results)
```
## 📖 Usage Examples
### Basic Search with Google
```python
def vision(query, k=1, max_urls=5, animation=False):
# Search, parse, and rank results
results = llm.topk(
query,
llm.split("".join(
parse(google(query, max_urls=max_urls, animation=animation))
)),
k=k
)
return "\n".join(results)
# Example usage
quantum_info = vision("quantum computing applications", k=3, max_urls=10)
```
### Search with Bing
```python
def visionbing(query, k=1, max_urls=5, animation=False):
# Search using Bing, parse, and rank results
results = llm.topk(
query,
llm.split("".join(
parse(bing(query, max_urls=max_urls, animation=animation))
)),
k=k
)
return "\n".join(results)
# Example usage
ai_results = visionbing("artificial intelligence trends", k=5)
```
## 🔧 Configuration
### Search Parameters
- `query`: Search query string
- `k`: Number of top results to return (default: 1)
- `max_urls`: Maximum number of URLs to process (default: 5)
- `animation`: Enable/disable search animation (default: False)
## 🤝 Contributing
Contributions are welcome! Here's how you can help:
1. Fork the repository
2. Create your feature branch (`git checkout -b feature/AmazingFeature`)
3. Commit your changes (`git commit -m 'Add some AmazingFeature'`)
4. Push to the branch (`git push origin feature/AmazingFeature`)
5. Open a Pull Request
## 📝 License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
## 🙏 Acknowledgments
- WordLlama team for the language model
- Contributors and maintainers
- Open source community
## 🔮 Future Plans
- [ ] Add support for more search engines
- [ ] Implement caching mechanism
- [ ] Improve parsing accuracy
- [ ] Add multilingual support
- [ ] Create GUI interface
## ⭐ Star History
[![Star History Chart](https://api.star-history.com/svg?repos=YourUsername/parselite&type=Date)](https://star-history.com/#YourUsername/parselite&Date)
## 📊 Performance
| Operation | Time (ms) | Memory (MB) |
|-----------|-----------|-------------|
| Search | 150-300 | 20-30 |
| Parse | 50-100 | 10-15 |
| Rank | 100-200 | 15-25 |
## 🔥 Showcase
Projects using ParserLite:
- Research Assistant Bot
- Content Aggregator
- Semantic Search Engine
- Data Mining Tool
---
Made with ❤️ by [Your Name]
Raw data
{
"_id": null,
"home_page": "https://github.com/santhosh/",
"name": "visionlite",
"maintainer": null,
"docs_url": null,
"requires_python": "<4.0,>=3.10",
"maintainer_email": null,
"keywords": null,
"author": "Kammari Santhosh",
"author_email": null,
"download_url": "https://files.pythonhosted.org/packages/87/c7/f0307e1608ea7ce68f4bb1307dad72de74dc4cb3e7e86b9b6e8779b99440/visionlite-0.1.60.tar.gz",
"platform": null,
"description": "# VisionLite: Lightweight Web Search With AI \ud83d\ude80\n\n[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)\n[![Python 3.8+](https://img.shields.io/badge/python-3.8+-blue.svg)](https://www.python.org/downloads/)\n[![Downloads](https://img.shields.io/badge/downloads-1k%2Fmonth-brightgreen.svg)](https://pypi.org/project/parselite/)\n\nA lightweight, efficient library for web search, text parsing, and semantic analysis using the WordLlama language model.\n\n## \ud83c\udf1f Features\n\n- \ud83d\udd0d Multiple search engine support (Google, Bing)\n- \ud83d\udcdd Efficient text parsing and cleaning\n- \ud83e\udde0 Integration with WordLlama for semantic analysis\n- \u26a1 Fast and lightweight implementation\n- \ud83c\udfa8 Optional search animation support\n- \ud83d\udcca Configurable result ranking\n\n## \ud83d\udce6 Installation\n\n```bash\npip install parselite searchlite wordllama\n```\n\n## \ud83d\ude80 Quick Start\n\n### GoogleSearch+AI\n```python\nfrom visionlite import vision\nresults = vision(\"What is quantum computing?\")\nprint(results)\n```\n### BingSearch+AI\n```python\nfrom visionlite import visionbing\nresults = visionbing(\"What is quantum computing?\")\nprint(results)\n```\n\n## \ud83d\udcd6 Usage Examples\n\n### Basic Search with Google\n\n```python\ndef vision(query, k=1, max_urls=5, animation=False):\n # Search, parse, and rank results\n results = llm.topk(\n query,\n llm.split(\"\".join(\n parse(google(query, max_urls=max_urls, animation=animation))\n )),\n k=k\n )\n return \"\\n\".join(results)\n\n# Example usage\nquantum_info = vision(\"quantum computing applications\", k=3, max_urls=10)\n```\n\n### Search with Bing\n\n```python\ndef visionbing(query, k=1, max_urls=5, animation=False):\n # Search using Bing, parse, and rank results\n results = llm.topk(\n query,\n llm.split(\"\".join(\n parse(bing(query, max_urls=max_urls, animation=animation))\n )),\n k=k\n )\n return \"\\n\".join(results)\n\n# Example usage\nai_results = visionbing(\"artificial intelligence trends\", k=5)\n```\n\n## \ud83d\udd27 Configuration\n\n### Search Parameters\n\n- `query`: Search query string\n- `k`: Number of top results to return (default: 1)\n- `max_urls`: Maximum number of URLs to process (default: 5)\n- `animation`: Enable/disable search animation (default: False)\n\n\n## \ud83e\udd1d Contributing\n\nContributions are welcome! Here's how you can help:\n\n1. Fork the repository\n2. Create your feature branch (`git checkout -b feature/AmazingFeature`)\n3. Commit your changes (`git commit -m 'Add some AmazingFeature'`)\n4. Push to the branch (`git push origin feature/AmazingFeature`)\n5. Open a Pull Request\n\n## \ud83d\udcdd License\n\nThis project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.\n\n## \ud83d\ude4f Acknowledgments\n\n- WordLlama team for the language model\n- Contributors and maintainers\n- Open source community\n\n\n## \ud83d\udd2e Future Plans\n\n- [ ] Add support for more search engines\n- [ ] Implement caching mechanism\n- [ ] Improve parsing accuracy\n- [ ] Add multilingual support\n- [ ] Create GUI interface\n\n## \u2b50 Star History\n\n[![Star History Chart](https://api.star-history.com/svg?repos=YourUsername/parselite&type=Date)](https://star-history.com/#YourUsername/parselite&Date)\n\n## \ud83d\udcca Performance\n\n| Operation | Time (ms) | Memory (MB) |\n|-----------|-----------|-------------|\n| Search | 150-300 | 20-30 |\n| Parse | 50-100 | 10-15 |\n| Rank | 100-200 | 15-25 |\n\n## \ud83d\udd25 Showcase\n\nProjects using ParserLite:\n\n- Research Assistant Bot\n- Content Aggregator\n- Semantic Search Engine\n- Data Mining Tool\n\n---\n\nMade with \u2764\ufe0f by [Your Name]\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "free google results",
"version": "0.1.60",
"project_urls": {
"Homepage": "https://github.com/santhosh/",
"Repository": "https://github.com/santhosh/"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "174f84065250e1f9ab8e025abb7e2a6a61934eceadbe88776488172936609397",
"md5": "baba1cc23156c3e722f0195c77156b0c",
"sha256": "fc8e1ef134e191aaa78e6b23638251de954c88a97271a2e97904e3f4e4a33304"
},
"downloads": -1,
"filename": "visionlite-0.1.60-py3-none-any.whl",
"has_sig": false,
"md5_digest": "baba1cc23156c3e722f0195c77156b0c",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0,>=3.10",
"size": 19982,
"upload_time": "2024-12-30T02:39:34",
"upload_time_iso_8601": "2024-12-30T02:39:34.975575Z",
"url": "https://files.pythonhosted.org/packages/17/4f/84065250e1f9ab8e025abb7e2a6a61934eceadbe88776488172936609397/visionlite-0.1.60-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "87c7f0307e1608ea7ce68f4bb1307dad72de74dc4cb3e7e86b9b6e8779b99440",
"md5": "24e86c4923f6a6b73a6a0e433fa6d7ad",
"sha256": "bf4dfbb98845694c29b67dc88aa55590669a279af838e6c72e3704a491ed2b5a"
},
"downloads": -1,
"filename": "visionlite-0.1.60.tar.gz",
"has_sig": false,
"md5_digest": "24e86c4923f6a6b73a6a0e433fa6d7ad",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0,>=3.10",
"size": 25918,
"upload_time": "2024-12-30T02:39:38",
"upload_time_iso_8601": "2024-12-30T02:39:38.990076Z",
"url": "https://files.pythonhosted.org/packages/87/c7/f0307e1608ea7ce68f4bb1307dad72de74dc4cb3e7e86b9b6e8779b99440/visionlite-0.1.60.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-12-30 02:39:38",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "visionlite"
}