# Installation
- step 1
```bash
git clone https://github.com/charleslf2/visionner
```
- step 2
```bash
cd visionner
```
- step 3
```bash
py setup.py install
```
# Usage
```python3
>>> from visionner.core import DatasetImporter
>>> your_dataset=DatasetImporter("path/to/your/dataset/", size=(28, 28))
```
```python3
>>> from visionner.core import SupervisedImporter
>>> features, labels= SupervisedImporter("path/to/your/dataset", categories=["cat", "dog"], size=(28,28))
```
```python3
### normalize your dataset
>>> from visionner.core import DatasetNormalizer
>>> your_normalized_dataset=DatasetNormalizer(your_dataset)
```
```python3
### create a trainset and a testset
>>> from visionner.core import TrainTestSpliter
>>> x_train, x_test=TrainTestSpliter(dataset, test_size=0.2)
```
```python3
### visualize the first image of your dataset
>>> import matplotlib.pyplot as plt
>>> plt.imshow(your_dataset[0])
>>> plt.show()
```
```python3
### save your dataset
>>> from visionner.core import DatasetSaver
>>> DatasetSaver("my_saved_dataset", your_dataset)
```
```python3
### open your dataset
>>> from visionner.core import DatasetOpener
>>> my_saved_dataset=DatasetOpener("my_saved_dataset.npy")
```
Raw data
{
"_id": null,
"home_page": "https://github.com/charleslf2/visionner",
"name": "visionner",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "Computer-vision,preprocessing,Images,Dataset,visionner",
"author": "charles TCHANAKE",
"author_email": "datadevfernolf@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/18/bf/521b8719f6c643da1af790752067badb028e8b87808edd3a05f0aceff4dc/visionner-0.0.7.tar.gz",
"platform": null,
"description": "# Installation\r\n- step 1 \r\n\r\n```bash\r\ngit clone https://github.com/charleslf2/visionner\r\n``` \r\n\r\n- step 2\r\n\r\n```bash\r\ncd visionner\r\n```\r\n- step 3 \r\n\r\n```bash\r\npy setup.py install\r\n```\r\n\r\n\r\n# Usage\r\n\r\n```python3\r\n\r\n>>> from visionner.core import DatasetImporter\r\n\r\n>>> your_dataset=DatasetImporter(\"path/to/your/dataset/\", size=(28, 28))\r\n\r\n```\r\n\r\n```python3\r\n\r\n>>> from visionner.core import SupervisedImporter\r\n\r\n>>> features, labels= SupervisedImporter(\"path/to/your/dataset\", categories=[\"cat\", \"dog\"], size=(28,28))\r\n\r\n```\r\n\r\n```python3\r\n\r\n### normalize your dataset\r\n\r\n>>> from visionner.core import DatasetNormalizer\r\n\r\n>>> your_normalized_dataset=DatasetNormalizer(your_dataset)\r\n\r\n```\r\n\r\n```python3\r\n\r\n### create a trainset and a testset\r\n\r\n>>> from visionner.core import TrainTestSpliter\r\n\r\n>>> x_train, x_test=TrainTestSpliter(dataset, test_size=0.2)\r\n\r\n```\r\n\r\n```python3\r\n\r\n### visualize the first image of your dataset\r\n\r\n>>> import matplotlib.pyplot as plt \r\n\r\n>>> plt.imshow(your_dataset[0])\r\n>>> plt.show()\r\n\r\n```\r\n\r\n```python3\r\n\r\n### save your dataset\r\n\r\n>>> from visionner.core import DatasetSaver\r\n\r\n>>> DatasetSaver(\"my_saved_dataset\", your_dataset)\r\n\r\n```\r\n\r\n```python3\r\n\r\n### open your dataset\r\n\r\n>>> from visionner.core import DatasetOpener\r\n\r\n>>> my_saved_dataset=DatasetOpener(\"my_saved_dataset.npy\") \r\n\r\n```\r\n",
"bugtrack_url": null,
"license": "",
"summary": "Turn raw image dataset into numpy array ; more suitable for deep learning tasks",
"version": "0.0.7",
"project_urls": {
"Homepage": "https://github.com/charleslf2/visionner"
},
"split_keywords": [
"computer-vision",
"preprocessing",
"images",
"dataset",
"visionner"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "49cfbd1430c875476c90fd636e105ad64d933d032956076e1f0ce86e4c416a25",
"md5": "50523011518888da8d53bd281024fb28",
"sha256": "8952a6ad44dfbd3c478fd8bf45e1f547341f9072efac5a80fc3023af8557437d"
},
"downloads": -1,
"filename": "visionner-0.0.7-py3-none-any.whl",
"has_sig": false,
"md5_digest": "50523011518888da8d53bd281024fb28",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 3651,
"upload_time": "2023-07-06T09:40:12",
"upload_time_iso_8601": "2023-07-06T09:40:12.853164Z",
"url": "https://files.pythonhosted.org/packages/49/cf/bd1430c875476c90fd636e105ad64d933d032956076e1f0ce86e4c416a25/visionner-0.0.7-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "18bf521b8719f6c643da1af790752067badb028e8b87808edd3a05f0aceff4dc",
"md5": "a6752414e158ffa7d45522c2fd3b5478",
"sha256": "472bcab9b3e65372c05429c85aafe947246bc1c91547e0e9adbf089eae5c6a54"
},
"downloads": -1,
"filename": "visionner-0.0.7.tar.gz",
"has_sig": false,
"md5_digest": "a6752414e158ffa7d45522c2fd3b5478",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 3437,
"upload_time": "2023-07-06T09:40:14",
"upload_time_iso_8601": "2023-07-06T09:40:14.488793Z",
"url": "https://files.pythonhosted.org/packages/18/bf/521b8719f6c643da1af790752067badb028e8b87808edd3a05f0aceff4dc/visionner-0.0.7.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-07-06 09:40:14",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "charleslf2",
"github_project": "visionner",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"requirements": [],
"lcname": "visionner"
}