vladiate


Namevladiate JSON
Version 0.0.25 PyPI version JSON
download
home_pagehttp://github.com/di/vladiate
SummaryVladiate is a strict validation tool for CSV files
upload_time2023-08-31 19:37:45
maintainer
docs_urlNone
authorDustin Ingram
requires_python
licenseMIT
keywords validate csv vampires
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            Vladiate
========

.. image:: https://github.com/di/vladiate/actions/workflows/test.yml/badge.svg?query=branch%3Amaster+event%3Apush
    :target: https://github.com/di/vladiate/actions/workflows/test.yml?query=branch%3Amaster+event%3Apush

.. image:: https://coveralls.io/repos/di/vladiate/badge.svg?branch=master
    :target: https://coveralls.io/github/di/vladiate

Description
-----------

Vladiate helps you write explicit assertions for every field of your CSV
file.

Features
--------

**Write validation schemas in plain-old Python**
  No UI, no XML, no JSON, just code.

**Write your own validators**
  Vladiate comes with a few by default, but there's no reason you can't write
  your own.

**Validate multiple files at once**
  Either with the same schema, or different ones.

Documentation
-------------

Installation
~~~~~~~~~~~~

Installing:

::

    $ pip install vladiate

Quickstart
~~~~~~~~~~

Below is an example of a ``vladfile.py``

.. code:: python

    from vladiate import Vlad
    from vladiate.validators import UniqueValidator, SetValidator
    from vladiate.inputs import LocalFile

    class YourFirstValidator(Vlad):
        source = LocalFile('vampires.csv')
        validators = {
            'Column A': [
                UniqueValidator()
            ],
            'Column B': [
                SetValidator(['Vampire', 'Not A Vampire'])
            ]
        }

Here we define a number of validators for a local file ``vampires.csv``,
which would look like this:

::

    Column A,Column B
    Vlad the Impaler,Not A Vampire
    Dracula,Vampire
    Count Chocula,Vampire

We then run ``vladiate`` in the same directory as your ``.csv`` file:

::

    $ vladiate

And get the following output:

::

    Validating YourFirstValidator(source=LocalFile('vampires.csv'))
    Passed! :)

Handling Changes
^^^^^^^^^^^^^^^^

Let's imagine that you've gotten a new CSV file,
``potential_vampires.csv``, that looks like this:

::

    Column A,Column B
    Vlad the Impaler,Not A Vampire
    Dracula,Vampire
    Count Chocula,Vampire
    Ronald Reagan,Maybe A Vampire

If we were to update our first validator to use this file as follows:

::

    - class YourFirstValidator(Vlad):
    -     source = LocalFile('vampires.csv')
    + class YourFirstFailingValidator(Vlad):
    +     source = LocalFile('potential_vampires.csv')

we would get the following error:

::

    Validating YourFirstFailingValidator(source=LocalFile('potential_vampires.csv'))
    Failed :(
      SetValidator failed 1 time(s) (25.0%) on field: 'Column B'
        Invalid fields: ['Maybe A Vampire']

And we would know that we'd either need to sanitize this field, or add
it to the ``SetValidator``.

Starting from scratch
^^^^^^^^^^^^^^^^^^^^^

To make writing a new ``vladfile.py`` easy, Vladiate will give
meaningful error messages.

Given the following as ``real_vampires.csv``:

::

    Column A,Column B,Column C
    Vlad the Impaler,Not A Vampire
    Dracula,Vampire
    Count Chocula,Vampire
    Ronald Reagan,Maybe A Vampire

We could write a bare-bones validator as follows:

.. code:: python

    class YourFirstEmptyValidator(Vlad):
        source = LocalFile('real_vampires.csv')
        validators = {}

Running this with ``vladiate`` would give the following error:

::

    Validating YourFirstEmptyValidator(source=LocalFile('real_vampires.csv'))
    Missing...
      Missing validators for:
        'Column A': [],
        'Column B': [],
        'Column C': [],

Vladiate expects something to be specified for every column, *even if it
is an empty list* (more on this later). We can easily copy and paste
from the error into our ``vladfile.py`` to make it:

.. code:: python

    class YourFirstEmptyValidator(Vlad):
        source = LocalFile('real_vampires.csv')
        validators = {
            'Column A': [],
            'Column B': [],
            'Column C': [],
        }

When we run *this* with ``vladiate``, we get:

::

    Validating YourSecondEmptyValidator(source=LocalFile('real_vampires.csv'))
    Failed :(
      EmptyValidator failed 4 time(s) (100.0%) on field: 'Column A'
        Invalid fields: ['Dracula', 'Vlad the Impaler', 'Count Chocula', 'Ronald Reagan']
      EmptyValidator failed 4 time(s) (100.0%) on field: 'Column B'
        Invalid fields: ['Maybe A Vampire', 'Not A Vampire', 'Vampire']
      EmptyValidator failed 4 time(s) (100.0%) on field: 'Column C'
        Invalid fields: ['Real', 'Not Real']

This is because Vladiate interprets an empty list of validators for a
field as an ``EmptyValidator``, which expects an empty string in every
field. This helps us make meaningful decisions when adding validators to
our ``vladfile.py``. It also ensures that we are not forgetting about a
column or field which is not empty.

Built-in Validators
^^^^^^^^^^^^^^^^^^^

Vladiate comes with a few common validators built-in:

*class* ``Validator``

  Generic validator. Should be subclassed by any custom validators. Not to
  be used directly.

*class* ``CastValidator``

  Generic "can-be-cast-to-x" validator. Should be subclassed by any
  cast-test validator. Not to be used directly.

*class* ``IntValidator``

  Validates whether a field can be cast to an ``int`` type or not.

  :``empty_ok=False``:
      Specify whether a field which is an empty string should be ignored.

*class* ``FloatValidator``

  Validates whether a field can be cast to an ``float`` type or not.

  :``empty_ok=False``:
      Specify whether a field which is an empty string should be ignored.

*class* ``SetValidator``

  Validates whether a field is in the specified set of possible fields.

  :``valid_set=[]``:
      List of valid possible fields
  :``empty_ok=False``:
      Implicity adds the empty string to the specified set.
  :``ignore_case=False``:
      Ignore the case between values in the column and valid set

*class* ``UniqueValidator``

  Ensures that a given field is not repeated in any other column. Can
  optionally determine "uniqueness" with other fields in the row as well via
  ``unique_with``.

  :``unique_with=[]``:
      List of field names to make the primary field unique with.
  :``empty_ok=False``:
      Specify whether a field which is an empty string should be ignored.

*class* ``RegexValidator``

  Validates whether a field matches the given regex using `re.match()`.

  :``pattern=r'di^'``:
      The regex pattern. Fails for all fields by default.
  :``full=False``:
      Specify whether we should use a fullmatch() or match().
  :``empty_ok=False``:
      Specify whether a field which is an empty string should be ignored.

*class* ``RangeValidator``

  Validates whether a field falls within a given range (inclusive). Can handle
  integers or floats.

  :``low``:
      The low value of the range.
  :``high``:
      The high value of the range.
  :``empty_ok=False``:
      Specify whether a field which is an empty string should be ignored.

*class* ``EmptyValidator``

  Ensure that a field is always empty. Essentially the same as an empty
  ``SetValidator``. This is used by default when a field has no
  validators.

*class* ``NotEmptyValidator``

  The opposite of an ``EmptyValidator``. Ensure that a field is never empty.

*class* ``Ignore``

  Always passes validation. Used to explicity ignore a given column.

*class* ``RowValidator``

  Generic row validator. Should be subclassed by any custom validators. Not
  to be used directly.

*class* ``RowLengthValidator``

  Validates that each row has the expected number of fields. The expected
  number of fields is inferred from the CSV header row read by
  ``csv.DictReader``.

Built-in Input Types
^^^^^^^^^^^^^^^^^^^^

Vladiate comes with the following input types:

*class* ``VladInput``

  Generic input. Should be subclassed by any custom inputs. Not to be used
  directly.

*class* ``LocalFile``

  Read from a file local to the filesystem.

  :``filename``:
      Path to a local CSV file.

*class* ``S3File``

  Read from a file in S3. Optionally can specify either a full path, or a
  bucket/key pair.

  Requires the `boto <https://github.com/boto/boto>`_ library, which should be
  installed via ``pip install vladiate[s3]``.

  :``path=None``:
      A full S3 filepath (e.g., ``s3://foo.bar/path/to/file.csv``)

  :``bucket=None``:
      S3 bucket. Must be specified with a ``key``.

  :``key=None``:
      S3 key. Must be specified with a ``bucket``.

*class* ``String``

  Read CSV from a string. Can take either an ``str`` or a ``StringIO``.

  :``string_input=None``
      Regular Python string input.

  :``string_io=None``
      ``StringIO`` input.

Running Vlads Programatically
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

*class* ``Vlad``

  Initialize a Vlad programatically

  :``source``:
      Required. Any `VladInput`.

  :``validators={}``:
      List of validators. Optional, defaults to the class variable `validators`
      if set, otherwise uses `EmptyValidator` for all fields.

  :``delimiter=','``:
      The delimiter used within your csv source. Optional, defaults to `,`.

  :``ignore_missing_validators=False``:
      Whether to fail validation if there are fields in the file for which the
      `Vlad` does not have validators. Optional, defaults to `False`.

  :``quiet=False``:
      Whether to disable log output generated by validations.
      Optional, defaults to `False`.

  For example:

.. code:: python

    from vladiate import Vlad
    from vladiate.inputs import LocalFile
    Vlad(source=LocalFile('path/to/local/file.csv')).validate()

Testing
~~~~~~~

To run the tests:

::

    make test

To run the linter:

::

    make lint

Command Line Arguments
~~~~~~~~~~~~~~~~~~~~~~

.. code:: bash

    Usage: vladiate [options] [VladClass [VladClass2 ... ]]

    Options:
      -h, --help            show this help message and exit
      -f VLADFILE, --vladfile=VLADFILE
                            Python module file to import, e.g. '../other.py'.
                            Default: vladfile
      -l, --list            Show list of possible vladiate classes and exit
      -V, --version         show version number and exit
      -p PROCESSES, --processes=PROCESSES
                            attempt to use this number of processes, Default: 1
      -q, --quiet           disable console log output generated by validations

Contributors
------------

-  `Dustin Ingram <https://github.com/di>`__
-  `Clara Bennett <https://github.com/csojinb>`__
-  `Aditya Natraj <https://github.com/adityanatra>`__
-  `Sterling Petersen <https://github.com/sterlingpetersen>`__
-  `Aleix <https://github.com/maleix>`__
-  `Bob Lannon <https://github.com/boblannon>`__
-  `Santi <https://github.com/santilytics>`__
-  `David Park <https://github.com/dp247>`__
-  `Jon Bonafato <https://github.com/jonafato>`__

License
-------

Open source MIT license.

            

Raw data

            {
    "_id": null,
    "home_page": "http://github.com/di/vladiate",
    "name": "vladiate",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "validate CSV vampires",
    "author": "Dustin Ingram",
    "author_email": "github@dustingram.com",
    "download_url": "https://files.pythonhosted.org/packages/74/ca/09bfbaa47c64c08383b4a4b19783b4c157403e350465b0ac56edf2a9de6a/vladiate-0.0.25.tar.gz",
    "platform": null,
    "description": "Vladiate\n========\n\n.. image:: https://github.com/di/vladiate/actions/workflows/test.yml/badge.svg?query=branch%3Amaster+event%3Apush\n    :target: https://github.com/di/vladiate/actions/workflows/test.yml?query=branch%3Amaster+event%3Apush\n\n.. image:: https://coveralls.io/repos/di/vladiate/badge.svg?branch=master\n    :target: https://coveralls.io/github/di/vladiate\n\nDescription\n-----------\n\nVladiate helps you write explicit assertions for every field of your CSV\nfile.\n\nFeatures\n--------\n\n**Write validation schemas in plain-old Python**\n  No UI, no XML, no JSON, just code.\n\n**Write your own validators**\n  Vladiate comes with a few by default, but there's no reason you can't write\n  your own.\n\n**Validate multiple files at once**\n  Either with the same schema, or different ones.\n\nDocumentation\n-------------\n\nInstallation\n~~~~~~~~~~~~\n\nInstalling:\n\n::\n\n    $ pip install vladiate\n\nQuickstart\n~~~~~~~~~~\n\nBelow is an example of a ``vladfile.py``\n\n.. code:: python\n\n    from vladiate import Vlad\n    from vladiate.validators import UniqueValidator, SetValidator\n    from vladiate.inputs import LocalFile\n\n    class YourFirstValidator(Vlad):\n        source = LocalFile('vampires.csv')\n        validators = {\n            'Column A': [\n                UniqueValidator()\n            ],\n            'Column B': [\n                SetValidator(['Vampire', 'Not A Vampire'])\n            ]\n        }\n\nHere we define a number of validators for a local file ``vampires.csv``,\nwhich would look like this:\n\n::\n\n    Column A,Column B\n    Vlad the Impaler,Not A Vampire\n    Dracula,Vampire\n    Count Chocula,Vampire\n\nWe then run ``vladiate`` in the same directory as your ``.csv`` file:\n\n::\n\n    $ vladiate\n\nAnd get the following output:\n\n::\n\n    Validating YourFirstValidator(source=LocalFile('vampires.csv'))\n    Passed! :)\n\nHandling Changes\n^^^^^^^^^^^^^^^^\n\nLet's imagine that you've gotten a new CSV file,\n``potential_vampires.csv``, that looks like this:\n\n::\n\n    Column A,Column B\n    Vlad the Impaler,Not A Vampire\n    Dracula,Vampire\n    Count Chocula,Vampire\n    Ronald Reagan,Maybe A Vampire\n\nIf we were to update our first validator to use this file as follows:\n\n::\n\n    - class YourFirstValidator(Vlad):\n    -     source = LocalFile('vampires.csv')\n    + class YourFirstFailingValidator(Vlad):\n    +     source = LocalFile('potential_vampires.csv')\n\nwe would get the following error:\n\n::\n\n    Validating YourFirstFailingValidator(source=LocalFile('potential_vampires.csv'))\n    Failed :(\n      SetValidator failed 1 time(s) (25.0%) on field: 'Column B'\n        Invalid fields: ['Maybe A Vampire']\n\nAnd we would know that we'd either need to sanitize this field, or add\nit to the ``SetValidator``.\n\nStarting from scratch\n^^^^^^^^^^^^^^^^^^^^^\n\nTo make writing a new ``vladfile.py`` easy, Vladiate will give\nmeaningful error messages.\n\nGiven the following as ``real_vampires.csv``:\n\n::\n\n    Column A,Column B,Column C\n    Vlad the Impaler,Not A Vampire\n    Dracula,Vampire\n    Count Chocula,Vampire\n    Ronald Reagan,Maybe A Vampire\n\nWe could write a bare-bones validator as follows:\n\n.. code:: python\n\n    class YourFirstEmptyValidator(Vlad):\n        source = LocalFile('real_vampires.csv')\n        validators = {}\n\nRunning this with ``vladiate`` would give the following error:\n\n::\n\n    Validating YourFirstEmptyValidator(source=LocalFile('real_vampires.csv'))\n    Missing...\n      Missing validators for:\n        'Column A': [],\n        'Column B': [],\n        'Column C': [],\n\nVladiate expects something to be specified for every column, *even if it\nis an empty list* (more on this later). We can easily copy and paste\nfrom the error into our ``vladfile.py`` to make it:\n\n.. code:: python\n\n    class YourFirstEmptyValidator(Vlad):\n        source = LocalFile('real_vampires.csv')\n        validators = {\n            'Column A': [],\n            'Column B': [],\n            'Column C': [],\n        }\n\nWhen we run *this* with ``vladiate``, we get:\n\n::\n\n    Validating YourSecondEmptyValidator(source=LocalFile('real_vampires.csv'))\n    Failed :(\n      EmptyValidator failed 4 time(s) (100.0%) on field: 'Column A'\n        Invalid fields: ['Dracula', 'Vlad the Impaler', 'Count Chocula', 'Ronald Reagan']\n      EmptyValidator failed 4 time(s) (100.0%) on field: 'Column B'\n        Invalid fields: ['Maybe A Vampire', 'Not A Vampire', 'Vampire']\n      EmptyValidator failed 4 time(s) (100.0%) on field: 'Column C'\n        Invalid fields: ['Real', 'Not Real']\n\nThis is because Vladiate interprets an empty list of validators for a\nfield as an ``EmptyValidator``, which expects an empty string in every\nfield. This helps us make meaningful decisions when adding validators to\nour ``vladfile.py``. It also ensures that we are not forgetting about a\ncolumn or field which is not empty.\n\nBuilt-in Validators\n^^^^^^^^^^^^^^^^^^^\n\nVladiate comes with a few common validators built-in:\n\n*class* ``Validator``\n\n  Generic validator. Should be subclassed by any custom validators. Not to\n  be used directly.\n\n*class* ``CastValidator``\n\n  Generic \"can-be-cast-to-x\" validator. Should be subclassed by any\n  cast-test validator. Not to be used directly.\n\n*class* ``IntValidator``\n\n  Validates whether a field can be cast to an ``int`` type or not.\n\n  :``empty_ok=False``:\n      Specify whether a field which is an empty string should be ignored.\n\n*class* ``FloatValidator``\n\n  Validates whether a field can be cast to an ``float`` type or not.\n\n  :``empty_ok=False``:\n      Specify whether a field which is an empty string should be ignored.\n\n*class* ``SetValidator``\n\n  Validates whether a field is in the specified set of possible fields.\n\n  :``valid_set=[]``:\n      List of valid possible fields\n  :``empty_ok=False``:\n      Implicity adds the empty string to the specified set.\n  :``ignore_case=False``:\n      Ignore the case between values in the column and valid set\n\n*class* ``UniqueValidator``\n\n  Ensures that a given field is not repeated in any other column. Can\n  optionally determine \"uniqueness\" with other fields in the row as well via\n  ``unique_with``.\n\n  :``unique_with=[]``:\n      List of field names to make the primary field unique with.\n  :``empty_ok=False``:\n      Specify whether a field which is an empty string should be ignored.\n\n*class* ``RegexValidator``\n\n  Validates whether a field matches the given regex using `re.match()`.\n\n  :``pattern=r'di^'``:\n      The regex pattern. Fails for all fields by default.\n  :``full=False``:\n      Specify whether we should use a fullmatch() or match().\n  :``empty_ok=False``:\n      Specify whether a field which is an empty string should be ignored.\n\n*class* ``RangeValidator``\n\n  Validates whether a field falls within a given range (inclusive). Can handle\n  integers or floats.\n\n  :``low``:\n      The low value of the range.\n  :``high``:\n      The high value of the range.\n  :``empty_ok=False``:\n      Specify whether a field which is an empty string should be ignored.\n\n*class* ``EmptyValidator``\n\n  Ensure that a field is always empty. Essentially the same as an empty\n  ``SetValidator``. This is used by default when a field has no\n  validators.\n\n*class* ``NotEmptyValidator``\n\n  The opposite of an ``EmptyValidator``. Ensure that a field is never empty.\n\n*class* ``Ignore``\n\n  Always passes validation. Used to explicity ignore a given column.\n\n*class* ``RowValidator``\n\n  Generic row validator. Should be subclassed by any custom validators. Not\n  to be used directly.\n\n*class* ``RowLengthValidator``\n\n  Validates that each row has the expected number of fields. The expected\n  number of fields is inferred from the CSV header row read by\n  ``csv.DictReader``.\n\nBuilt-in Input Types\n^^^^^^^^^^^^^^^^^^^^\n\nVladiate comes with the following input types:\n\n*class* ``VladInput``\n\n  Generic input. Should be subclassed by any custom inputs. Not to be used\n  directly.\n\n*class* ``LocalFile``\n\n  Read from a file local to the filesystem.\n\n  :``filename``:\n      Path to a local CSV file.\n\n*class* ``S3File``\n\n  Read from a file in S3. Optionally can specify either a full path, or a\n  bucket/key pair.\n\n  Requires the `boto <https://github.com/boto/boto>`_ library, which should be\n  installed via ``pip install vladiate[s3]``.\n\n  :``path=None``:\n      A full S3 filepath (e.g., ``s3://foo.bar/path/to/file.csv``)\n\n  :``bucket=None``:\n      S3 bucket. Must be specified with a ``key``.\n\n  :``key=None``:\n      S3 key. Must be specified with a ``bucket``.\n\n*class* ``String``\n\n  Read CSV from a string. Can take either an ``str`` or a ``StringIO``.\n\n  :``string_input=None``\n      Regular Python string input.\n\n  :``string_io=None``\n      ``StringIO`` input.\n\nRunning Vlads Programatically\n^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n\n*class* ``Vlad``\n\n  Initialize a Vlad programatically\n\n  :``source``:\n      Required. Any `VladInput`.\n\n  :``validators={}``:\n      List of validators. Optional, defaults to the class variable `validators`\n      if set, otherwise uses `EmptyValidator` for all fields.\n\n  :``delimiter=','``:\n      The delimiter used within your csv source. Optional, defaults to `,`.\n\n  :``ignore_missing_validators=False``:\n      Whether to fail validation if there are fields in the file for which the\n      `Vlad` does not have validators. Optional, defaults to `False`.\n\n  :``quiet=False``:\n      Whether to disable log output generated by validations.\n      Optional, defaults to `False`.\n\n  For example:\n\n.. code:: python\n\n    from vladiate import Vlad\n    from vladiate.inputs import LocalFile\n    Vlad(source=LocalFile('path/to/local/file.csv')).validate()\n\nTesting\n~~~~~~~\n\nTo run the tests:\n\n::\n\n    make test\n\nTo run the linter:\n\n::\n\n    make lint\n\nCommand Line Arguments\n~~~~~~~~~~~~~~~~~~~~~~\n\n.. code:: bash\n\n    Usage: vladiate [options] [VladClass [VladClass2 ... ]]\n\n    Options:\n      -h, --help            show this help message and exit\n      -f VLADFILE, --vladfile=VLADFILE\n                            Python module file to import, e.g. '../other.py'.\n                            Default: vladfile\n      -l, --list            Show list of possible vladiate classes and exit\n      -V, --version         show version number and exit\n      -p PROCESSES, --processes=PROCESSES\n                            attempt to use this number of processes, Default: 1\n      -q, --quiet           disable console log output generated by validations\n\nContributors\n------------\n\n-  `Dustin Ingram <https://github.com/di>`__\n-  `Clara Bennett <https://github.com/csojinb>`__\n-  `Aditya Natraj <https://github.com/adityanatra>`__\n-  `Sterling Petersen <https://github.com/sterlingpetersen>`__\n-  `Aleix <https://github.com/maleix>`__\n-  `Bob Lannon <https://github.com/boblannon>`__\n-  `Santi <https://github.com/santilytics>`__\n-  `David Park <https://github.com/dp247>`__\n-  `Jon Bonafato <https://github.com/jonafato>`__\n\nLicense\n-------\n\nOpen source MIT license.\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Vladiate is a strict validation tool for CSV files",
    "version": "0.0.25",
    "project_urls": {
        "Homepage": "http://github.com/di/vladiate"
    },
    "split_keywords": [
        "validate",
        "csv",
        "vampires"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "466484e47b4b32386cc018224b8044b132b294b5e10a381a9d5166db7b039c66",
                "md5": "ea9abe0d55129792d28bcdbe91a701ef",
                "sha256": "c020eb65c5bdc696d5eda895b24a8a913da5765d2bad297feb1100c5658adcf7"
            },
            "downloads": -1,
            "filename": "vladiate-0.0.25-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "ea9abe0d55129792d28bcdbe91a701ef",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 15187,
            "upload_time": "2023-08-31T19:37:43",
            "upload_time_iso_8601": "2023-08-31T19:37:43.425475Z",
            "url": "https://files.pythonhosted.org/packages/46/64/84e47b4b32386cc018224b8044b132b294b5e10a381a9d5166db7b039c66/vladiate-0.0.25-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "74ca09bfbaa47c64c08383b4a4b19783b4c157403e350465b0ac56edf2a9de6a",
                "md5": "70e0e00309513736184e57aa1d23d48d",
                "sha256": "ad66e5eccee595d07bb66c365c42cefea018257b05a2c38b7293d509eede2e6b"
            },
            "downloads": -1,
            "filename": "vladiate-0.0.25.tar.gz",
            "has_sig": false,
            "md5_digest": "70e0e00309513736184e57aa1d23d48d",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 20921,
            "upload_time": "2023-08-31T19:37:45",
            "upload_time_iso_8601": "2023-08-31T19:37:45.135300Z",
            "url": "https://files.pythonhosted.org/packages/74/ca/09bfbaa47c64c08383b4a4b19783b4c157403e350465b0ac56edf2a9de6a/vladiate-0.0.25.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-08-31 19:37:45",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "di",
    "github_project": "vladiate",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "tox": true,
    "lcname": "vladiate"
}
        
Elapsed time: 0.30302s