vllm-acc


Namevllm-acc JSON
Version 0.4.21716571491.2888474 PyPI version JSON
download
home_pagehttps://github.com/vllm-project/vllm
SummaryA high-throughput and memory-efficient inference and serving engine for LLMs
upload_time2024-05-24 17:35:42
maintainerNone
docs_urlNone
authorvLLM Team
requires_python>=3.8
licenseApache 2.0
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <p align="center">
  <picture>
    <source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/logos/vllm-logo-text-dark.png">
    <img alt="vLLM" src="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/logos/vllm-logo-text-light.png" width=55%>
  </picture>
</p>

<h3 align="center">
Easy, fast, and cheap LLM serving for everyone
</h3>

<p align="center">
| <a href="https://docs.vllm.ai"><b>Documentation</b></a> | <a href="https://vllm.ai"><b>Blog</b></a> | <a href="https://arxiv.org/abs/2309.06180"><b>Paper</b></a> | <a href="https://discord.gg/jz7wjKhh6g"><b>Discord</b></a> |

</p>

---

**The Fourth vLLM Bay Area Meetup (June 11th 5:30pm-8pm PT)**

We are thrilled to announce our fourth vLLM Meetup!
The vLLM team will share recent updates and roadmap.
We will also have vLLM collaborators from BentoML and Cloudflare coming up to the stage to discuss their experience in deploying LLMs with vLLM.
Please register [here](https://lu.ma/agivllm) and join us!

---

*Latest News* 🔥
- [2024/04] We hosted [the third vLLM meetup](https://robloxandvllmmeetup2024.splashthat.com/) with Roblox! Please find the meetup slides [here](https://docs.google.com/presentation/d/1A--47JAK4BJ39t954HyTkvtfwn0fkqtsL8NGFuslReM/edit?usp=sharing).
- [2024/01] We hosted [the second vLLM meetup](https://lu.ma/ygxbpzhl) in SF! Please find the meetup slides [here](https://docs.google.com/presentation/d/12mI2sKABnUw5RBWXDYY-HtHth4iMSNcEoQ10jDQbxgA/edit?usp=sharing).
- [2024/01] Added ROCm 6.0 support to vLLM.
- [2023/12] Added ROCm 5.7 support to vLLM.
- [2023/10] We hosted [the first vLLM meetup](https://lu.ma/first-vllm-meetup) in SF! Please find the meetup slides [here](https://docs.google.com/presentation/d/1QL-XPFXiFpDBh86DbEegFXBXFXjix4v032GhShbKf3s/edit?usp=sharing).
- [2023/09] We created our [Discord server](https://discord.gg/jz7wjKhh6g)! Join us to discuss vLLM and LLM serving! We will also post the latest announcements and updates there.
- [2023/09] We released our [PagedAttention paper](https://arxiv.org/abs/2309.06180) on arXiv!
- [2023/08] We would like to express our sincere gratitude to [Andreessen Horowitz](https://a16z.com/2023/08/30/supporting-the-open-source-ai-community/) (a16z) for providing a generous grant to support the open-source development and research of vLLM.
- [2023/07] Added support for LLaMA-2! You can run and serve 7B/13B/70B LLaMA-2s on vLLM with a single command!
- [2023/06] Serving vLLM On any Cloud with SkyPilot. Check out a 1-click [example](https://github.com/skypilot-org/skypilot/blob/master/llm/vllm) to start the vLLM demo, and the [blog post](https://blog.skypilot.co/serving-llm-24x-faster-on-the-cloud-with-vllm-and-skypilot/) for the story behind vLLM development on the clouds.
- [2023/06] We officially released vLLM! FastChat-vLLM integration has powered [LMSYS Vicuna and Chatbot Arena](https://chat.lmsys.org) since mid-April. Check out our [blog post](https://vllm.ai).

---
## About
vLLM is a fast and easy-to-use library for LLM inference and serving.

vLLM is fast with:

- State-of-the-art serving throughput
- Efficient management of attention key and value memory with **PagedAttention**
- Continuous batching of incoming requests
- Fast model execution with CUDA/HIP graph
- Quantization: [GPTQ](https://arxiv.org/abs/2210.17323), [AWQ](https://arxiv.org/abs/2306.00978), [SqueezeLLM](https://arxiv.org/abs/2306.07629), FP8 KV Cache
- Optimized CUDA kernels

vLLM is flexible and easy to use with:

- Seamless integration with popular Hugging Face models
- High-throughput serving with various decoding algorithms, including *parallel sampling*, *beam search*, and more
- Tensor parallelism support for distributed inference
- Streaming outputs
- OpenAI-compatible API server
- Support NVIDIA GPUs and AMD GPUs
- (Experimental) Prefix caching support
- (Experimental) Multi-lora support

vLLM seamlessly supports most popular open-source models on HuggingFace, including:
- Transformer-like LLMs (e.g., Llama)
- Mixture-of-Expert LLMs (e.g., Mixtral)
- Multi-modal LLMs (e.g., LLaVA)

Find the full list of supported models [here](https://docs.vllm.ai/en/latest/models/supported_models.html).

## Getting Started

Install vLLM with pip or [from source](https://vllm.readthedocs.io/en/latest/getting_started/installation.html#build-from-source):

```bash
pip install vllm
```

Visit our [documentation](https://vllm.readthedocs.io/en/latest/) to learn more.
- [Installation](https://vllm.readthedocs.io/en/latest/getting_started/installation.html)
- [Quickstart](https://vllm.readthedocs.io/en/latest/getting_started/quickstart.html)
- [Supported Models](https://vllm.readthedocs.io/en/latest/models/supported_models.html)

## Contributing

We welcome and value any contributions and collaborations.
Please check out [CONTRIBUTING.md](./CONTRIBUTING.md) for how to get involved.

## Sponsors

vLLM is a community project. Our compute resources for development and testing are supported by the following organizations. Thank you for your support!

<!-- Note: Please sort them in alphabetical order. -->
<!-- Note: Please keep these consistent with docs/source/community/sponsors.md -->

- a16z
- AMD
- Anyscale
- AWS
- Crusoe Cloud
- Databricks
- DeepInfra
- Lambda Lab
- NVIDIA
- Replicate
- Roblox
- RunPod
- Trainy
- UC Berkeley
- UC San Diego

We also have an official fundraising venue through [OpenCollective](https://opencollective.com/vllm). We plan to use the fund to support the development, maintenance, and adoption of vLLM.

## Citation

If you use vLLM for your research, please cite our [paper](https://arxiv.org/abs/2309.06180):
```bibtex
@inproceedings{kwon2023efficient,
  title={Efficient Memory Management for Large Language Model Serving with PagedAttention},
  author={Woosuk Kwon and Zhuohan Li and Siyuan Zhuang and Ying Sheng and Lianmin Zheng and Cody Hao Yu and Joseph E. Gonzalez and Hao Zhang and Ion Stoica},
  booktitle={Proceedings of the ACM SIGOPS 29th Symposium on Operating Systems Principles},
  year={2023}
}
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/vllm-project/vllm",
    "name": "vllm-acc",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": null,
    "author": "vLLM Team",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/fe/b9/f41d480e3727992b42dbfaebe5a180201e459566757aa4829771cb7caec4/vllm_acc-0.4.21716571491.2888474.tar.gz",
    "platform": null,
    "description": "<p align=\"center\">\n  <picture>\n    <source media=\"(prefers-color-scheme: dark)\" srcset=\"https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/logos/vllm-logo-text-dark.png\">\n    <img alt=\"vLLM\" src=\"https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/logos/vllm-logo-text-light.png\" width=55%>\n  </picture>\n</p>\n\n<h3 align=\"center\">\nEasy, fast, and cheap LLM serving for everyone\n</h3>\n\n<p align=\"center\">\n| <a href=\"https://docs.vllm.ai\"><b>Documentation</b></a> | <a href=\"https://vllm.ai\"><b>Blog</b></a> | <a href=\"https://arxiv.org/abs/2309.06180\"><b>Paper</b></a> | <a href=\"https://discord.gg/jz7wjKhh6g\"><b>Discord</b></a> |\n\n</p>\n\n---\n\n**The Fourth vLLM Bay Area Meetup (June 11th 5:30pm-8pm PT)**\n\nWe are thrilled to announce our fourth vLLM Meetup!\nThe vLLM team will share recent updates and roadmap.\nWe will also have vLLM collaborators from BentoML and Cloudflare coming up to the stage to discuss their experience in deploying LLMs with vLLM.\nPlease register [here](https://lu.ma/agivllm) and join us!\n\n---\n\n*Latest News* \ud83d\udd25\n- [2024/04] We hosted [the third vLLM meetup](https://robloxandvllmmeetup2024.splashthat.com/) with Roblox! Please find the meetup slides [here](https://docs.google.com/presentation/d/1A--47JAK4BJ39t954HyTkvtfwn0fkqtsL8NGFuslReM/edit?usp=sharing).\n- [2024/01] We hosted [the second vLLM meetup](https://lu.ma/ygxbpzhl) in SF! Please find the meetup slides [here](https://docs.google.com/presentation/d/12mI2sKABnUw5RBWXDYY-HtHth4iMSNcEoQ10jDQbxgA/edit?usp=sharing).\n- [2024/01] Added ROCm 6.0 support to vLLM.\n- [2023/12] Added ROCm 5.7 support to vLLM.\n- [2023/10] We hosted [the first vLLM meetup](https://lu.ma/first-vllm-meetup) in SF! Please find the meetup slides [here](https://docs.google.com/presentation/d/1QL-XPFXiFpDBh86DbEegFXBXFXjix4v032GhShbKf3s/edit?usp=sharing).\n- [2023/09] We created our [Discord server](https://discord.gg/jz7wjKhh6g)! Join us to discuss vLLM and LLM serving! We will also post the latest announcements and updates there.\n- [2023/09] We released our [PagedAttention paper](https://arxiv.org/abs/2309.06180) on arXiv!\n- [2023/08] We would like to express our sincere gratitude to [Andreessen Horowitz](https://a16z.com/2023/08/30/supporting-the-open-source-ai-community/) (a16z) for providing a generous grant to support the open-source development and research of vLLM.\n- [2023/07] Added support for LLaMA-2! You can run and serve 7B/13B/70B LLaMA-2s on vLLM with a single command!\n- [2023/06] Serving vLLM On any Cloud with SkyPilot. Check out a 1-click [example](https://github.com/skypilot-org/skypilot/blob/master/llm/vllm) to start the vLLM demo, and the [blog post](https://blog.skypilot.co/serving-llm-24x-faster-on-the-cloud-with-vllm-and-skypilot/) for the story behind vLLM development on the clouds.\n- [2023/06] We officially released vLLM! FastChat-vLLM integration has powered [LMSYS Vicuna and Chatbot Arena](https://chat.lmsys.org) since mid-April. Check out our [blog post](https://vllm.ai).\n\n---\n## About\nvLLM is a fast and easy-to-use library for LLM inference and serving.\n\nvLLM is fast with:\n\n- State-of-the-art serving throughput\n- Efficient management of attention key and value memory with **PagedAttention**\n- Continuous batching of incoming requests\n- Fast model execution with CUDA/HIP graph\n- Quantization: [GPTQ](https://arxiv.org/abs/2210.17323), [AWQ](https://arxiv.org/abs/2306.00978), [SqueezeLLM](https://arxiv.org/abs/2306.07629), FP8 KV Cache\n- Optimized CUDA kernels\n\nvLLM is flexible and easy to use with:\n\n- Seamless integration with popular Hugging Face models\n- High-throughput serving with various decoding algorithms, including *parallel sampling*, *beam search*, and more\n- Tensor parallelism support for distributed inference\n- Streaming outputs\n- OpenAI-compatible API server\n- Support NVIDIA GPUs and AMD GPUs\n- (Experimental) Prefix caching support\n- (Experimental) Multi-lora support\n\nvLLM seamlessly supports most popular open-source models on HuggingFace, including:\n- Transformer-like LLMs (e.g., Llama)\n- Mixture-of-Expert LLMs (e.g., Mixtral)\n- Multi-modal LLMs (e.g., LLaVA)\n\nFind the full list of supported models [here](https://docs.vllm.ai/en/latest/models/supported_models.html).\n\n## Getting Started\n\nInstall vLLM with pip or [from source](https://vllm.readthedocs.io/en/latest/getting_started/installation.html#build-from-source):\n\n```bash\npip install vllm\n```\n\nVisit our [documentation](https://vllm.readthedocs.io/en/latest/) to learn more.\n- [Installation](https://vllm.readthedocs.io/en/latest/getting_started/installation.html)\n- [Quickstart](https://vllm.readthedocs.io/en/latest/getting_started/quickstart.html)\n- [Supported Models](https://vllm.readthedocs.io/en/latest/models/supported_models.html)\n\n## Contributing\n\nWe welcome and value any contributions and collaborations.\nPlease check out [CONTRIBUTING.md](./CONTRIBUTING.md) for how to get involved.\n\n## Sponsors\n\nvLLM is a community project. Our compute resources for development and testing are supported by the following organizations. Thank you for your support!\n\n<!-- Note: Please sort them in alphabetical order. -->\n<!-- Note: Please keep these consistent with docs/source/community/sponsors.md -->\n\n- a16z\n- AMD\n- Anyscale\n- AWS\n- Crusoe Cloud\n- Databricks\n- DeepInfra\n- Lambda Lab\n- NVIDIA\n- Replicate\n- Roblox\n- RunPod\n- Trainy\n- UC Berkeley\n- UC San Diego\n\nWe also have an official fundraising venue through [OpenCollective](https://opencollective.com/vllm). We plan to use the fund to support the development, maintenance, and adoption of vLLM.\n\n## Citation\n\nIf you use vLLM for your research, please cite our [paper](https://arxiv.org/abs/2309.06180):\n```bibtex\n@inproceedings{kwon2023efficient,\n  title={Efficient Memory Management for Large Language Model Serving with PagedAttention},\n  author={Woosuk Kwon and Zhuohan Li and Siyuan Zhuang and Ying Sheng and Lianmin Zheng and Cody Hao Yu and Joseph E. Gonzalez and Hao Zhang and Ion Stoica},\n  booktitle={Proceedings of the ACM SIGOPS 29th Symposium on Operating Systems Principles},\n  year={2023}\n}\n```\n",
    "bugtrack_url": null,
    "license": "Apache 2.0",
    "summary": "A high-throughput and memory-efficient inference and serving engine for LLMs",
    "version": "0.4.21716571491.2888474",
    "project_urls": {
        "Documentation": "https://vllm.readthedocs.io/en/latest/",
        "Homepage": "https://github.com/vllm-project/vllm"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "6dccc64fd110a490829ede451da2d730fd16ec16350858e813af2b90c30941c5",
                "md5": "9b936c14b619388182ed72c5228bba73",
                "sha256": "ef84e095946272bc9fb43057938a3f0c1c33844cfe19106f41e1311c08bd55f5"
            },
            "downloads": -1,
            "filename": "vllm_acc-0.4.21716571491.2888474-cp310-cp310-manylinux1_x86_64.whl",
            "has_sig": false,
            "md5_digest": "9b936c14b619388182ed72c5228bba73",
            "packagetype": "bdist_wheel",
            "python_version": "cp310",
            "requires_python": ">=3.8",
            "size": 46321221,
            "upload_time": "2024-05-24T17:35:39",
            "upload_time_iso_8601": "2024-05-24T17:35:39.545460Z",
            "url": "https://files.pythonhosted.org/packages/6d/cc/c64fd110a490829ede451da2d730fd16ec16350858e813af2b90c30941c5/vllm_acc-0.4.21716571491.2888474-cp310-cp310-manylinux1_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "feb9f41d480e3727992b42dbfaebe5a180201e459566757aa4829771cb7caec4",
                "md5": "20fbeccdddff87d18db2c627b8f0bf69",
                "sha256": "64f6c1164899366a7ad8344cff2401541acda82351cba8e14b840ab0cdb64851"
            },
            "downloads": -1,
            "filename": "vllm_acc-0.4.21716571491.2888474.tar.gz",
            "has_sig": false,
            "md5_digest": "20fbeccdddff87d18db2c627b8f0bf69",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 664782,
            "upload_time": "2024-05-24T17:35:42",
            "upload_time_iso_8601": "2024-05-24T17:35:42.491663Z",
            "url": "https://files.pythonhosted.org/packages/fe/b9/f41d480e3727992b42dbfaebe5a180201e459566757aa4829771cb7caec4/vllm_acc-0.4.21716571491.2888474.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-05-24 17:35:42",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "vllm-project",
    "github_project": "vllm",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "vllm-acc"
}
        
Elapsed time: 0.26964s