<p align="center">
<picture>
<source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/logos/vllm-logo-text-dark.png">
<img alt="vLLM" src="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/logos/vllm-logo-text-light.png" width=55%>
</picture>
</p>
<h3 align="center">
Easy, fast, and cheap LLM serving for everyone
</h3>
<p align="center">
| <a href="https://docs.vllm.ai"><b>Documentation</b></a> | <a href="https://vllm.ai"><b>Blog</b></a> | <a href="https://arxiv.org/abs/2309.06180"><b>Paper</b></a> | <a href="https://discord.gg/jz7wjKhh6g"><b>Discord</b></a> |
</p>
*Latest News* 🔥
- [2024/04] We hosted [the third vLLM meetup](https://robloxandvllmmeetup2024.splashthat.com/) with Roblox! Please find the meetup slides [here](https://docs.google.com/presentation/d/1A--47JAK4BJ39t954HyTkvtfwn0fkqtsL8NGFuslReM/edit?usp=sharing).
- [2024/01] We hosted [the second vLLM meetup](https://lu.ma/ygxbpzhl) in SF! Please find the meetup slides [here](https://docs.google.com/presentation/d/12mI2sKABnUw5RBWXDYY-HtHth4iMSNcEoQ10jDQbxgA/edit?usp=sharing).
- [2024/01] Added ROCm 6.0 support to vLLM.
- [2023/12] Added ROCm 5.7 support to vLLM.
- [2023/10] We hosted [the first vLLM meetup](https://lu.ma/first-vllm-meetup) in SF! Please find the meetup slides [here](https://docs.google.com/presentation/d/1QL-XPFXiFpDBh86DbEegFXBXFXjix4v032GhShbKf3s/edit?usp=sharing).
- [2023/09] We created our [Discord server](https://discord.gg/jz7wjKhh6g)! Join us to discuss vLLM and LLM serving! We will also post the latest announcements and updates there.
- [2023/09] We released our [PagedAttention paper](https://arxiv.org/abs/2309.06180) on arXiv!
- [2023/08] We would like to express our sincere gratitude to [Andreessen Horowitz](https://a16z.com/2023/08/30/supporting-the-open-source-ai-community/) (a16z) for providing a generous grant to support the open-source development and research of vLLM.
- [2023/07] Added support for LLaMA-2! You can run and serve 7B/13B/70B LLaMA-2s on vLLM with a single command!
- [2023/06] Serving vLLM On any Cloud with SkyPilot. Check out a 1-click [example](https://github.com/skypilot-org/skypilot/blob/master/llm/vllm) to start the vLLM demo, and the [blog post](https://blog.skypilot.co/serving-llm-24x-faster-on-the-cloud-with-vllm-and-skypilot/) for the story behind vLLM development on the clouds.
- [2023/06] We officially released vLLM! FastChat-vLLM integration has powered [LMSYS Vicuna and Chatbot Arena](https://chat.lmsys.org) since mid-April. Check out our [blog post](https://vllm.ai).
---
## About
vLLM is a fast and easy-to-use library for LLM inference and serving.
vLLM is fast with:
- State-of-the-art serving throughput
- Efficient management of attention key and value memory with **PagedAttention**
- Continuous batching of incoming requests
- Fast model execution with CUDA/HIP graph
- Quantization: [GPTQ](https://arxiv.org/abs/2210.17323), [AWQ](https://arxiv.org/abs/2306.00978), [SqueezeLLM](https://arxiv.org/abs/2306.07629), FP8 KV Cache
- Optimized CUDA kernels
vLLM is flexible and easy to use with:
- Seamless integration with popular Hugging Face models
- High-throughput serving with various decoding algorithms, including *parallel sampling*, *beam search*, and more
- Tensor parallelism support for distributed inference
- Streaming outputs
- OpenAI-compatible API server
- Support NVIDIA GPUs and AMD GPUs
- (Experimental) Prefix caching support
- (Experimental) Multi-lora support
vLLM seamlessly supports many Hugging Face models, including the following architectures:
- Aquila & Aquila2 (`BAAI/AquilaChat2-7B`, `BAAI/AquilaChat2-34B`, `BAAI/Aquila-7B`, `BAAI/AquilaChat-7B`, etc.)
- Baichuan & Baichuan2 (`baichuan-inc/Baichuan2-13B-Chat`, `baichuan-inc/Baichuan-7B`, etc.)
- BLOOM (`bigscience/bloom`, `bigscience/bloomz`, etc.)
- ChatGLM (`THUDM/chatglm2-6b`, `THUDM/chatglm3-6b`, etc.)
- Command-R (`CohereForAI/c4ai-command-r-v01`, etc.)
- DBRX (`databricks/dbrx-base`, `databricks/dbrx-instruct` etc.)
- DeciLM (`Deci/DeciLM-7B`, `Deci/DeciLM-7B-instruct`, etc.)
- Falcon (`tiiuae/falcon-7b`, `tiiuae/falcon-40b`, `tiiuae/falcon-rw-7b`, etc.)
- Gemma (`google/gemma-2b`, `google/gemma-7b`, etc.)
- GPT-2 (`gpt2`, `gpt2-xl`, etc.)
- GPT BigCode (`bigcode/starcoder`, `bigcode/gpt_bigcode-santacoder`, etc.)
- GPT-J (`EleutherAI/gpt-j-6b`, `nomic-ai/gpt4all-j`, etc.)
- GPT-NeoX (`EleutherAI/gpt-neox-20b`, `databricks/dolly-v2-12b`, `stabilityai/stablelm-tuned-alpha-7b`, etc.)
- InternLM (`internlm/internlm-7b`, `internlm/internlm-chat-7b`, etc.)
- InternLM2 (`internlm/internlm2-7b`, `internlm/internlm2-chat-7b`, etc.)
- Jais (`core42/jais-13b`, `core42/jais-13b-chat`, `core42/jais-30b-v3`, `core42/jais-30b-chat-v3`, etc.)
- LLaMA, Llama 2, and Meta Llama 3 (`meta-llama/Meta-Llama-3-8B-Instruct`, `meta-llama/Meta-Llama-3-70B-Instruct`, `meta-llama/Llama-2-70b-hf`, `lmsys/vicuna-13b-v1.3`, `young-geng/koala`, `openlm-research/open_llama_13b`, etc.)
- MiniCPM (`openbmb/MiniCPM-2B-sft-bf16`, `openbmb/MiniCPM-2B-dpo-bf16`, etc.)
- Mistral (`mistralai/Mistral-7B-v0.1`, `mistralai/Mistral-7B-Instruct-v0.1`, etc.)
- Mixtral (`mistralai/Mixtral-8x7B-v0.1`, `mistralai/Mixtral-8x7B-Instruct-v0.1`, `mistral-community/Mixtral-8x22B-v0.1`, etc.)
- MPT (`mosaicml/mpt-7b`, `mosaicml/mpt-30b`, etc.)
- OLMo (`allenai/OLMo-1B-hf`, `allenai/OLMo-7B-hf`, etc.)
- OPT (`facebook/opt-66b`, `facebook/opt-iml-max-30b`, etc.)
- Orion (`OrionStarAI/Orion-14B-Base`, `OrionStarAI/Orion-14B-Chat`, etc.)
- Phi (`microsoft/phi-1_5`, `microsoft/phi-2`, etc.)
- Phi-3 (`microsoft/Phi-3-mini-4k-instruct`, `microsoft/Phi-3-mini-128k-instruct`, etc.)
- Qwen (`Qwen/Qwen-7B`, `Qwen/Qwen-7B-Chat`, etc.)
- Qwen2 (`Qwen/Qwen1.5-7B`, `Qwen/Qwen1.5-7B-Chat`, etc.)
- Qwen2MoE (`Qwen/Qwen1.5-MoE-A2.7B`, `Qwen/Qwen1.5-MoE-A2.7B-Chat`, etc.)
- StableLM(`stabilityai/stablelm-3b-4e1t`, `stabilityai/stablelm-base-alpha-7b-v2`, etc.)
- Starcoder2(`bigcode/starcoder2-3b`, `bigcode/starcoder2-7b`, `bigcode/starcoder2-15b`, etc.)
- Xverse (`xverse/XVERSE-7B-Chat`, `xverse/XVERSE-13B-Chat`, `xverse/XVERSE-65B-Chat`, etc.)
- Yi (`01-ai/Yi-6B`, `01-ai/Yi-34B`, etc.)
Install vLLM with pip or [from source](https://vllm.readthedocs.io/en/latest/getting_started/installation.html#build-from-source):
```bash
pip install vllm
```
## Getting Started
Visit our [documentation](https://vllm.readthedocs.io/en/latest/) to get started.
- [Installation](https://vllm.readthedocs.io/en/latest/getting_started/installation.html)
- [Quickstart](https://vllm.readthedocs.io/en/latest/getting_started/quickstart.html)
- [Supported Models](https://vllm.readthedocs.io/en/latest/models/supported_models.html)
## Contributing
We welcome and value any contributions and collaborations.
Please check out [CONTRIBUTING.md](./CONTRIBUTING.md) for how to get involved.
## Citation
If you use vLLM for your research, please cite our [paper](https://arxiv.org/abs/2309.06180):
```bibtex
@inproceedings{kwon2023efficient,
title={Efficient Memory Management for Large Language Model Serving with PagedAttention},
author={Woosuk Kwon and Zhuohan Li and Siyuan Zhuang and Ying Sheng and Lianmin Zheng and Cody Hao Yu and Joseph E. Gonzalez and Hao Zhang and Ion Stoica},
booktitle={Proceedings of the ACM SIGOPS 29th Symposium on Operating Systems Principles},
year={2023}
}
```
Raw data
{
"_id": null,
"home_page": "https://github.com/vllm-project/vllm",
"name": "vllm-online",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": null,
"author": "vLLM Team",
"author_email": null,
"download_url": "https://files.pythonhosted.org/packages/a9/05/c8d528b9c67eff3e1ff451ab0126433513df4455ada65ca3722516fc7b20/vllm-online-0.4.2.tar.gz",
"platform": null,
"description": "<p align=\"center\">\n <picture>\n <source media=\"(prefers-color-scheme: dark)\" srcset=\"https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/logos/vllm-logo-text-dark.png\">\n <img alt=\"vLLM\" src=\"https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/logos/vllm-logo-text-light.png\" width=55%>\n </picture>\n</p>\n\n<h3 align=\"center\">\nEasy, fast, and cheap LLM serving for everyone\n</h3>\n\n<p align=\"center\">\n| <a href=\"https://docs.vllm.ai\"><b>Documentation</b></a> | <a href=\"https://vllm.ai\"><b>Blog</b></a> | <a href=\"https://arxiv.org/abs/2309.06180\"><b>Paper</b></a> | <a href=\"https://discord.gg/jz7wjKhh6g\"><b>Discord</b></a> |\n\n</p>\n\n*Latest News* \ud83d\udd25\n- [2024/04] We hosted [the third vLLM meetup](https://robloxandvllmmeetup2024.splashthat.com/) with Roblox! Please find the meetup slides [here](https://docs.google.com/presentation/d/1A--47JAK4BJ39t954HyTkvtfwn0fkqtsL8NGFuslReM/edit?usp=sharing).\n- [2024/01] We hosted [the second vLLM meetup](https://lu.ma/ygxbpzhl) in SF! Please find the meetup slides [here](https://docs.google.com/presentation/d/12mI2sKABnUw5RBWXDYY-HtHth4iMSNcEoQ10jDQbxgA/edit?usp=sharing).\n- [2024/01] Added ROCm 6.0 support to vLLM.\n- [2023/12] Added ROCm 5.7 support to vLLM.\n- [2023/10] We hosted [the first vLLM meetup](https://lu.ma/first-vllm-meetup) in SF! Please find the meetup slides [here](https://docs.google.com/presentation/d/1QL-XPFXiFpDBh86DbEegFXBXFXjix4v032GhShbKf3s/edit?usp=sharing).\n- [2023/09] We created our [Discord server](https://discord.gg/jz7wjKhh6g)! Join us to discuss vLLM and LLM serving! We will also post the latest announcements and updates there.\n- [2023/09] We released our [PagedAttention paper](https://arxiv.org/abs/2309.06180) on arXiv!\n- [2023/08] We would like to express our sincere gratitude to [Andreessen Horowitz](https://a16z.com/2023/08/30/supporting-the-open-source-ai-community/) (a16z) for providing a generous grant to support the open-source development and research of vLLM.\n- [2023/07] Added support for LLaMA-2! You can run and serve 7B/13B/70B LLaMA-2s on vLLM with a single command!\n- [2023/06] Serving vLLM On any Cloud with SkyPilot. Check out a 1-click [example](https://github.com/skypilot-org/skypilot/blob/master/llm/vllm) to start the vLLM demo, and the [blog post](https://blog.skypilot.co/serving-llm-24x-faster-on-the-cloud-with-vllm-and-skypilot/) for the story behind vLLM development on the clouds.\n- [2023/06] We officially released vLLM! FastChat-vLLM integration has powered [LMSYS Vicuna and Chatbot Arena](https://chat.lmsys.org) since mid-April. Check out our [blog post](https://vllm.ai).\n\n---\n## About\nvLLM is a fast and easy-to-use library for LLM inference and serving.\n\nvLLM is fast with:\n\n- State-of-the-art serving throughput\n- Efficient management of attention key and value memory with **PagedAttention**\n- Continuous batching of incoming requests\n- Fast model execution with CUDA/HIP graph\n- Quantization: [GPTQ](https://arxiv.org/abs/2210.17323), [AWQ](https://arxiv.org/abs/2306.00978), [SqueezeLLM](https://arxiv.org/abs/2306.07629), FP8 KV Cache\n- Optimized CUDA kernels\n\nvLLM is flexible and easy to use with:\n\n- Seamless integration with popular Hugging Face models\n- High-throughput serving with various decoding algorithms, including *parallel sampling*, *beam search*, and more\n- Tensor parallelism support for distributed inference\n- Streaming outputs\n- OpenAI-compatible API server\n- Support NVIDIA GPUs and AMD GPUs\n- (Experimental) Prefix caching support\n- (Experimental) Multi-lora support\n\nvLLM seamlessly supports many Hugging Face models, including the following architectures:\n\n- Aquila & Aquila2 (`BAAI/AquilaChat2-7B`, `BAAI/AquilaChat2-34B`, `BAAI/Aquila-7B`, `BAAI/AquilaChat-7B`, etc.)\n- Baichuan & Baichuan2 (`baichuan-inc/Baichuan2-13B-Chat`, `baichuan-inc/Baichuan-7B`, etc.)\n- BLOOM (`bigscience/bloom`, `bigscience/bloomz`, etc.)\n- ChatGLM (`THUDM/chatglm2-6b`, `THUDM/chatglm3-6b`, etc.)\n- Command-R (`CohereForAI/c4ai-command-r-v01`, etc.)\n- DBRX (`databricks/dbrx-base`, `databricks/dbrx-instruct` etc.)\n- DeciLM (`Deci/DeciLM-7B`, `Deci/DeciLM-7B-instruct`, etc.)\n- Falcon (`tiiuae/falcon-7b`, `tiiuae/falcon-40b`, `tiiuae/falcon-rw-7b`, etc.)\n- Gemma (`google/gemma-2b`, `google/gemma-7b`, etc.)\n- GPT-2 (`gpt2`, `gpt2-xl`, etc.)\n- GPT BigCode (`bigcode/starcoder`, `bigcode/gpt_bigcode-santacoder`, etc.)\n- GPT-J (`EleutherAI/gpt-j-6b`, `nomic-ai/gpt4all-j`, etc.)\n- GPT-NeoX (`EleutherAI/gpt-neox-20b`, `databricks/dolly-v2-12b`, `stabilityai/stablelm-tuned-alpha-7b`, etc.)\n- InternLM (`internlm/internlm-7b`, `internlm/internlm-chat-7b`, etc.)\n- InternLM2 (`internlm/internlm2-7b`, `internlm/internlm2-chat-7b`, etc.)\n- Jais (`core42/jais-13b`, `core42/jais-13b-chat`, `core42/jais-30b-v3`, `core42/jais-30b-chat-v3`, etc.)\n- LLaMA, Llama 2, and Meta Llama 3 (`meta-llama/Meta-Llama-3-8B-Instruct`, `meta-llama/Meta-Llama-3-70B-Instruct`, `meta-llama/Llama-2-70b-hf`, `lmsys/vicuna-13b-v1.3`, `young-geng/koala`, `openlm-research/open_llama_13b`, etc.)\n- MiniCPM (`openbmb/MiniCPM-2B-sft-bf16`, `openbmb/MiniCPM-2B-dpo-bf16`, etc.)\n- Mistral (`mistralai/Mistral-7B-v0.1`, `mistralai/Mistral-7B-Instruct-v0.1`, etc.)\n- Mixtral (`mistralai/Mixtral-8x7B-v0.1`, `mistralai/Mixtral-8x7B-Instruct-v0.1`, `mistral-community/Mixtral-8x22B-v0.1`, etc.)\n- MPT (`mosaicml/mpt-7b`, `mosaicml/mpt-30b`, etc.)\n- OLMo (`allenai/OLMo-1B-hf`, `allenai/OLMo-7B-hf`, etc.)\n- OPT (`facebook/opt-66b`, `facebook/opt-iml-max-30b`, etc.)\n- Orion (`OrionStarAI/Orion-14B-Base`, `OrionStarAI/Orion-14B-Chat`, etc.)\n- Phi (`microsoft/phi-1_5`, `microsoft/phi-2`, etc.)\n- Phi-3 (`microsoft/Phi-3-mini-4k-instruct`, `microsoft/Phi-3-mini-128k-instruct`, etc.)\n- Qwen (`Qwen/Qwen-7B`, `Qwen/Qwen-7B-Chat`, etc.)\n- Qwen2 (`Qwen/Qwen1.5-7B`, `Qwen/Qwen1.5-7B-Chat`, etc.)\n- Qwen2MoE (`Qwen/Qwen1.5-MoE-A2.7B`, `Qwen/Qwen1.5-MoE-A2.7B-Chat`, etc.)\n- StableLM(`stabilityai/stablelm-3b-4e1t`, `stabilityai/stablelm-base-alpha-7b-v2`, etc.)\n- Starcoder2(`bigcode/starcoder2-3b`, `bigcode/starcoder2-7b`, `bigcode/starcoder2-15b`, etc.)\n- Xverse (`xverse/XVERSE-7B-Chat`, `xverse/XVERSE-13B-Chat`, `xverse/XVERSE-65B-Chat`, etc.)\n- Yi (`01-ai/Yi-6B`, `01-ai/Yi-34B`, etc.)\n\nInstall vLLM with pip or [from source](https://vllm.readthedocs.io/en/latest/getting_started/installation.html#build-from-source):\n\n```bash\npip install vllm\n```\n\n## Getting Started\n\nVisit our [documentation](https://vllm.readthedocs.io/en/latest/) to get started.\n- [Installation](https://vllm.readthedocs.io/en/latest/getting_started/installation.html)\n- [Quickstart](https://vllm.readthedocs.io/en/latest/getting_started/quickstart.html)\n- [Supported Models](https://vllm.readthedocs.io/en/latest/models/supported_models.html)\n\n## Contributing\n\nWe welcome and value any contributions and collaborations.\nPlease check out [CONTRIBUTING.md](./CONTRIBUTING.md) for how to get involved.\n\n## Citation\n\nIf you use vLLM for your research, please cite our [paper](https://arxiv.org/abs/2309.06180):\n```bibtex\n@inproceedings{kwon2023efficient,\n title={Efficient Memory Management for Large Language Model Serving with PagedAttention},\n author={Woosuk Kwon and Zhuohan Li and Siyuan Zhuang and Ying Sheng and Lianmin Zheng and Cody Hao Yu and Joseph E. Gonzalez and Hao Zhang and Ion Stoica},\n booktitle={Proceedings of the ACM SIGOPS 29th Symposium on Operating Systems Principles},\n year={2023}\n}\n```\n",
"bugtrack_url": null,
"license": "Apache 2.0",
"summary": "A high-throughput and memory-efficient inference and serving engine for LLMs",
"version": "0.4.2",
"project_urls": {
"Documentation": "https://vllm.readthedocs.io/en/latest/",
"Homepage": "https://github.com/vllm-project/vllm"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "a905c8d528b9c67eff3e1ff451ab0126433513df4455ada65ca3722516fc7b20",
"md5": "049b2a4e1e03edd2f9cdc55086f634a2",
"sha256": "3759f3b5f048459185ebd11449ad2dfcc8a3d8f5485fc06c2c8fd0da7f4a9d65"
},
"downloads": -1,
"filename": "vllm-online-0.4.2.tar.gz",
"has_sig": false,
"md5_digest": "049b2a4e1e03edd2f9cdc55086f634a2",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 532913,
"upload_time": "2024-04-29T02:49:29",
"upload_time_iso_8601": "2024-04-29T02:49:29.215868Z",
"url": "https://files.pythonhosted.org/packages/a9/05/c8d528b9c67eff3e1ff451ab0126433513df4455ada65ca3722516fc7b20/vllm-online-0.4.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-04-29 02:49:29",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "vllm-project",
"github_project": "vllm",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "vllm-online"
}